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Abstract

As of today, most movie recommendation services base their recommendations on col-
laborative filtering (CF) and/or content-based filtering (CBF) models that use metadata
(e.g., genre or cast). In most video-on-demand and streaming services, however, new
movies and TV series are continuously added. CF models are unable to make predic-
tions in such a scenario, since the newly added videos lack interactions—a problem
technically known as new item cold start (CS). Currently, the most common approach
to this problem is to switch to a purely CBF method, usually by exploiting textual meta-
data. This approach is known to have lower accuracy than CF because it ignores useful
collaborative information and relies on human-generated textual metadata, which are
expensive to collect and often prone to errors. User-generated content, such as tags,
can also be rare or absent in CS situations. In this paper, we introduce a new movie
recommender system that addresses the new item problem in the movie domain by
(i) integrating state-of-the-art audio and visual descriptors, which can be automati-
cally extracted from video content and constitute what we call the movie genome;
(i) exploiting an effective data fusion method named canonical correlation analysis,
which was successfully tested in our previous works Deldjoo et al. (in: International
Conference on Electronic Commerce and Web Technologies. Springer, Berlin, pp
34-45, 2016b; Proceedings of the Twelfth ACM Conference on Recommender Sys-
tems. ACM, 2018b), to better exploit complementary information between different
modalities; (iii) proposing a two-step hybrid approach which trains a CF model on
warm items (items with interactions) and leverages the learned model on the movie
genome to recommend cold items (items without interactions). Experimental valida-
tion is carried out using a system-centric study on a large-scale, real-world movie
recommendation dataset both in an absolute cold start and in a cold to warm transi-
tion; and a user-centric online experiment measuring different subjective aspects, such
as satisfaction and diversity. Results show the benefits of this approach compared to
existing approaches.
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1 Introduction

A dramatic rise in the generation of video content has occurred in recent years. Accord-
ing to Cisco, the largest networking company across the globe, by 2020 more than
75% of the world’s mobile data traffic will be video, or even 80% when video and
audio data are considered together (Cisco visual networking index 2016). This rise
has been fueled by online social network users who upload/post a staggering amount
of user-generated video on a daily basis. For instance, as of 2018, YouTube! users
upload over 400h of video every minute. This translates to about 3 years of non-stop
watching in order to consume all videos uploaded to YouTube in a single hour. Sim-
ilarly, Instagram? users post nearly 70 million photos and videos each day (Xu et al.
2017).

In this context, video recommender systems play an important role in helping users
of online streaming services, as well as of social networks, cope with this rapidly
increasing volume of videos and provide them with personalized experiences. Nev-
ertheless, the growing availability of digital videos has not been fully accompanied
by comfort in their accessibility via video recommender systems. The causes of this
problem are twofold: (i) the type of recommendation models in service today, which
are heavily dependent on usage data (in particular, implicit or explicit preference feed-
back) and/or metadata (e.g., genre and cast associated with the videos) (cf. Sect. 1.1),
and (ii) the nature of video data, which are information intensive when compared to
other media types, such as music or images (cf. Sect. 1.2). In the following article,
we analyze each of these dimensions. Throughout this paper, we will use a number of
abbreviations, which, for convenience are summarized in Table 1.

1.1 New item cold-start recommendation in the movie domain

To date, collaborative filtering (CF) methods (Koren and Bell 2015) lie at the core of
most real-word movie recommendation engines, due to their state-of-the-art accuracy
(McFee et al. 2012; Yuan et al. 2016). In most video-streaming services, however, new
movies and TV series are continuously added. CF models are not capable of providing
meaningful recommendations when items in the catalogue contain few interactions, a
problem commonly known as the cold start (CS) problem. The most severe case of CS
is when new items are added that lack any interactions, technically known as the new
item CS problem.? In such a situation, CF models are completely unable to make
predictions. As such, these new items are not recommended, go unnoticed by a large

1 https://www.youtube.com/.
2 https://www.instagram.com/.

3 Note that videos without interactions can also be old videos that have been never been watched by a user.
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Table 1 List of abbreviations used throughout the paper

Abbreviation Term

MM Multimedia

RS Recommender systems

VRS Video recommender systems

MRS Movie recommender systems

MMRS Multimedia recommender systems

CS Cold start

WS Warm start

AVF Aesthetic visual features

BLF Block-level features

CBF Content-based filtering

CF Collaborative filtering

CF-MMRS Collaborative filtering multimedia recommender system
CB-MMRS Content-based multimedia recommender system
CA-MMRS Context-aware multimedia recommender system

BPR Bayesian personalized ranking

KNN K-Nearest Neighbor

CFeCBF Collaborative-filtering enriched content-based filtering

part of the user community, and remain unrated, creating a vicious circle in which a
set of items in the RS is left out of the vote/recommendation process (Bobadilla et al.
2012). Being able to provide high-quality recommendations for cold items has several
advantages. Firstly, it will increase the novelty of the recommendations, which is a
highly desirable property and inherent in the user-centric and business-centric goals of
RS, i.e., the discovery of new content and the increase of revenues (Aggarwal 2016b;
Liu et al. 2014). Secondly, providing good new movie recommendations will allow
enough interactions/feedbacks to be collected in a brief amount of time enabling
effective CF recommendation. Despite previous efforts, the new item CS problem
remains far from being solved in the general case, and most existing approaches suffer
from it (Bobadilla et al. 2012; Zhou et al. 2011; Zhang et al. 2011).

Currently, the most common approach to counteracting the new item CS problem
is to switch to a pure CBF (de Gemmis et al. 2015; Lops et al. 2011) method by using
additional attribute content for items, usually by resorting to metadata provided in
textual form (Liu et al. 2011). This approach is known to have lower accuracy than
CF because it ignores potentially useful collaborative information and typically relies
on human-generated textual metadata, which are often noisy, expensive to collect, and
sparse. More importantly, extra information for cold items is not always available on
the web (especially in user-generated form), even if it is available in abundance for
warm items (Zhang et al. 2015). In addition, given the unstructured or semi-structured
nature of metadata, they often require complex natural language processing (NLP)
techniques for pre-processing, e.g., syntactic and semantic analysis or topic modeling
(Aggarwal 2016a).
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Many approaches have been proposed to address the new item CS issue, mainly
based on hybrid CF and CBF models (Lika et al. 2014; Cella et al. 2017; Sharma
et al. 2015; Ferrari Dacrema et al. 2018). Most recent work relies on machine learn-
ing to combine content and collaborative data. We focus on feature weighting rather
than on other types of hybrids (e.g., joint matrix factorization) because we aim to
build a hybridization strategy that can be easily applied to a CBF model. For instance,
the authors in Gantner et al. (2010) proposed a method to map item features into
the item embeddings learned in a matrix factorization algorithm, while the authors
in Schein et al. (2002) defined a probabilistic model trained via expectation mini-
mization. Another example is Sharma et al. (2015), where the authors proposed a
feature weighting model that learns feature weight by optimizing the ranking of the
recommendations over the user interactions for warm items.

Addressing this issue, the main contribution of the present work is to improve the
current state of the art by presenting a generalized, two-step machine learning approach
to feature weighting and by testing its effectiveness on both editorial features and state-
of-the-art multimedia (MM) descriptors. Hereafter, for simplicity, we refer to items
without interactions as cold items and items containing interactions as warm items.

1.2 Video as an information-intensive multimodal media type

When we watch a movie, we can effortlessly register many details conveyed to us
through different multimedia channels—in particular, the audio and visual channels.
As a result, the perception of a film in the eyes of viewers is influenced by many fac-
tors related not only related to, e.g., the genre, cast, and plot, but also according to the
overall film style (Bordwell et al. 1997). These factors affect the viewer’s experience.
For example, two movies may be from the same genre and director, but they can be
different based on the movie style. Consider as an example Empire of the Sun and
Schindler’s List, both dramatic movies directed by Steven Spielberg and both describ-
ing historical events. However, they are completely different in style, with Schindler’s
List shot like a documentary in black and white, while Empire of the Sun is shot using
bright colors and makes heavy use of special effects. Although these two movies are
similar with respect to traditional metadata (e.g., director, genre, year of production),
their different styles are likely to affect the viewers’ feelings and opinions differently
(Deldjoo et al. 2016d). In fact, the film story is first created by the author and the
comprehension of the cinematographical language by the spectator reshapes the story
(Fatemi and Mulhem 1999). The notion of story in a movie depends on semantic
content (reflected better in metadata) reshaped through stylistic cinematography ele-
ments (reflected better in multimedia content). These discernible characteristics of
movie content meet users’ different information needs.

The extent to which content-based approaches are used, and even the way “content”
is interpreted, varies between domains. While extracting descriptive item features from
text, audio, image, and video content is a well-established research domain in the
multimedia community (Lew et al. 2006), the recommender system community has
long considered metadata, such as the title, genre, tags, actors, or plot of a movie,
as the single source for content-based recommendation models, thereby disregarding
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the wealth of information encoded in the actual content signals. In order for MRS to
make progress in recommending the right movies to the right user(s), they need to
be able to interpret such multimodal signals as an ensemble and utilize item models
that take into account the maximum possible amount of this information. We refer to
such a holistic description of a movie, taking into account all available modalities, as
its movie genome, since it can be considered the footprint of both content and style
(Bronstein et al. 2010; Jalili et al. 201 8).4

In this paper, we specifically address the above-mentioned shortcomings of purely
metadata-based MRS by proposing a practical solution for the new item CS challenge
that exploits the movie genome. We set out to answer the following research questions:

RQ1 Can the exploitation of movie genome describing rich item information as a
whole, provide better recommendation quality compared with traditional approaches
that use editorial metadata such as genre and cast in CS scenarios?

RQ2 Which visual and audio information better captures users’ movie preferences in
CS scenarios?

RQ3 Can we effectively leverage past user behavior data on warm items (items with
interactions) to enrich the overall item representation and improve our ability to
recommend cold items when interactions are not available?

The remainder of this article is structured as follows. Section 2 positions our work in
the context of the state of the art and highlights its novel contributions. Section 3 intro-
duces the proposed general content-based recommendation framework. Sections 4 and
5 report on the experimental validation, namely the experimental setup and param-
eter tuning, offline experimentation, and a user study in a web survey, respectively.
Section 6 concludes the article in the context of the research questions and discusses
limitations and future perspectives.

2 State of the art

One main contribution of this work is the introduction of a solution for the new item
CS problem in the multimodal movie domain. In this section, we therefore review
the existing, state-of-the-art approaches in content-based multimedia recommender
systems (Sect. 2.1) and feature weighting for CS recommender systems (Sect. 2.2)
and position our contribution (Sect. 2.3).

2.1 Content-based multimedia recommendation

A multimedia recommendation system is a system that recommends a particular media
type, such as audio, image, video, and/or text, to the users (Deldjoo et al. 2018e,f).
We therefore organize the state-of-the-art CB-MMRS based on the target media type,
namely: (i) audio recommendation, (ii) image recommendation, and (iii) video rec-
ommendation. In the following subsections, we describe each of these systems.

4 Similarto biological DNA composed of long sequences of four letters A, T, C, G referred to as nucleotides.
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2.1.1 Audio recommendation

The most common example of audio recommendation is music recommendation
(Schedletal.2018; Vall etal. 2019). Over the past several years, a wealth of approaches,
including CF, CBF, context-aware recommenders, and hybrid methods, have been pro-
posed to address this task. An overview of popular approaches can be found in Schedl
etal. (2015, 2018). Perhaps more than in other MM domains, CB recommenders have
attracted substantial interest from researchers in the music domain, not least due to
their superior performance in CS scenarios.

Recent work has proposed deep learning-based CB approaches. For instance, the
authors in van den Oord et al. (2013) use a deep convolutional neural network (CNN)
trained on audio features, more precisely, on the log-scaled Mel spectrograms extracted
from 3-second-snippets of the audio, resulting in a latent factor representation for
each song. The authors evaluate their approach for tag prediction and music recom-
mendation using the Million Song Dataset (Bertin-Mahieux et al. 2011). In tenfold
cross-validation experiments using 50-dimensional latent factors, they show that the
CNN outperforms both metric learning to rank and a multilayer perceptron trained on
bag-of-words representations of vector-quantized Mel frequency cepstral coefficients
(MFCC) (Logan 2000a) in both tasks.

In contrast to such automatic feature learning approaches, some systems use
human-made annotations of music. Perhaps, the most notable and well-known is the
proprietary Music Genome Project (MGP),? which is used by music streaming major
Pandora.® MGP captures various attributes of music and uses them in a CBF recom-
mender system. These attributes are created by musical experts who manually annotate
songs. Pandora uses up to 450 specific descriptors per song, such as “aggressive female

CLINT3

vocalist”, “prominent backup vocals”, or “use of unusual harmonies”.

In our approach, we follow a strategy in between these two extremes (i.e., fully auto-
mated feature learning by deep learning and pure manual expert annotations). The
proposed movie genome uses well-established, state-of-the-art audio descriptors that
are semantically more meaningful than deep learned features, but at the same time do
not require a massive number of human annotators.

2.1.2 Image recommendation

Some interesting use-case scenarios of image recommendation can be mentioned in
the fashion domain (e.g., recommending clothes) and the cultural heritage domain
(e.g., recommending paintings in museums). For fashion, recommendation can be
performed in two main manners: finding a piece of clothing that matches a given gar-
ment image shown to the system as a visual query (such as two pairs of jeans which
are similar to each other considering their visual appearance) and finding the clothing,
which complements the given query (such as recommending a pair of jeans that match a

5 http://www.pandora.com/about/mgp.

6 Pandora might also use automatically extracted content (and other) features in their system, but the MGP
is arguable the approach for which Pandora is best known.
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shirt). The authors in McAuley et al. (2015) propose a CB-MMRS which provides per-
sonalized fashion recommendations by considering the visual appearance of clothes.
The main novelty, besides focusing on this novel fashion recommendation scenario,
is examining the visual appearance of the items under investigation to overcome the
CS problem.

The authors of Bartolini et al. (2013) propose a multimedia (image—video—
document) recommender platform to address the cultural heritage domain: in
particular, a recommender system to provide personalized visiting paths to tourists
visiting the Paestum ruins, one of the major Greco-Roman cities in the South of Italy.
The proposed system is able to uniformly combine heterogeneous multimedia data and
to provide context-aware recommendation techniques. This paper provides interesting
insights for building context-aware multimedia systems using content information,
with explicit focus on contextualization. The authors exploit high-level metadata
extracted in an automatic or semi-automatic manner from low-level (signal-level)
features and compare it with user preferences. The main shortcoming of this research
is the lack of an experimental study on a larger multimedia dataset.

Visual descriptors have also been used in restaurant recommendation systems by
the authors of Chu and Tsai (2017), in which images collected from a restaurant-based
social platform were first processed by an SVM-based image classification system that
used both low-level and deep features and split the images into four classes, indoor,
outdoor, food and drink images, based on the idea that these different categories of pic-
tures may have different influences on restaurant recommendation. This content-based
approach was used to successfully enhance the performance of matrix factorization,
Bayesian personalized ranking matrix factorization and FM approaches.

In our approach, we follow a strategy that also recognizes the importance of low-level
content (visual and audio) for movie recommendation and leverages it for new item
CS movie recommendation.

2.1.3 Video recommendation

As one of the earliest approaches to the problem of video recommendations, the authors
of Yang et al. (2007) and Mei et al. (2007, 2011) propose a video recommender
system named “Video Reach”. Given an online video and related information (query,
title, tags and surrounding text), the system recommends relevant videos in terms of
multimodal relevance and user feedback. Two types of user feedback are leveraged:
browsing behavior and playback on different portions of the video (the latter is specific
to Mei et al. 2011). These approaches are interesting from the perspective of using
multimodal video content (audio, visual, and textual) and a fusion scheme based on
user behavior. However, they have some limitations as well. Firstly, according to the
properties required by the attention fusion function, the proposed Video Reach system
filters out videos with low textual similarity to ensure that all videos are more or less
relevant and then only calculates the visual similarity of the filtered videos; this may
result in losing important information. Secondly, it uses only one type of visual feature,
namely the basic color histogram. Thirdly, an empirical set of weights is chosen to
serve as importance weights in a linear feature/modality fusion; for example, the
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textual keywords are given a much higher weight than the visual and aural keywords,
without investigating the opposite arrangement. Although the authors show that this
assumption is sufficient to make recommendation via adjusting weights, it is not clear
what effect such an empirical assumption has.

In our approach, we introduce a video recommendation system that leverages all
video properties (i.e., audio, visual, and textual) and an effective fusion method based
on canonical correlation analysis (CCA) to exploit the complementary information
between modalities in order to produce more powerful combined descriptors. More
importantly, we propose an approach for new item recommendation that leverages
the collaborative knowledge about warm items for the CBF of cold items, using the
combined descriptors.

2.2 Feature weighting for cold-start recommender systems

Relying on CBF algorithms to address cold items has two main drawbacks: firstly, it
is limited by the availability and quality of item features, and secondly, it is difficult
to connect the content and collaborative information. One way to build a hybrid of
content and collaborative information is via feature weighting. We focus on feature
weighting rather than on other types of hybrids because we aim to build a hybridization
strategy that can be easily applied to a CBF model. Feature weighting algorithms can
be either embedded methods, which learn feature weights as part of the model training,
or wrapper methods, which learn weights in a second phase on top of an already avail-
able model. Examples of embedded methods are user-specific feature-based similarity
models (UFSM) (Elbadrawy and Karypis 2015) and factorized bilinear similarity mod-
els (FBSM) (Sharma et al. 2015). Among embedded methods, the main drawbacks
are the complex training phase and a sensitivity to noise due to the strong coupling of
features and interactions. UFSM learns a personalized linear combination of similarity
functions, known as global similarity functions for cold-start top-N item recommen-
dations. UFSM can be considered a special case of FM (Elbadrawy and Karypis 2015;
Rendle 2012). FBSM was proposed as an evolution of UFSM that aims to discover
relations among item features instead of building user-specific item similarities. The
model builds an item-item similarity matrix which models how how well a feature of
an item interacts with all the features of the second item.

Wrapper methods, meanwhile, rely instead on a two-step approach by learning
feature weights on top of an already available model. An example of this is least-
square feature weights (LFW) (Cella et al. 2017), which learns feature weights from
a SLIM item-item similarity matrix using a simpler model than FBSM:

sim(i, j) =t Df; (1)

where f is the feature vector of an item and D is a diagonal matrix having as dimen-
sion the number of features. Another example of a wrapper method is HP3 (Bernardis
et al. 2018), which builds a hybrid recommender on top of a graph-based collaborative
model. A generalization of LFW has recently been published by the authors in Fer-
rari Dacrema et al. (2018). They demonstrate the effectiveness of wrapper methods in
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learning from a wider variety of collaborative models and present a comparative study
of some state-of-the-art algorithms. Their paper further shows that wrapper methods
with no latent factor component (i.e., matrix V, as in FBSM) tend to outperform oth-
ers. In our approach, we therefore choose to adopt this simpler model, as it combines
good recommendation quality with fast training time.

Similar strategies are available for matrix factorization models. Collective matrix
factorization (Singh and Gordon 2008) allows the joint factorization of both collabo-
rative and content data, which is applied in Saveski and Mantrach (2014) to propose
local collective embedding, a joint matrix factorization that enforces the manifold
structure exhibited by the collective embedding in the content data as well as allowing
collaborative interactions to be mapped to topics. An example of a wrapper method is
attribute to feature mapping (Gantner et al. 2010), an attribute-aware matrix factoriza-
tion model which maps item features to its latent factors via a two-step approach. All
previous approaches rely on the availability of some descriptors for each item, which
in some cases can be an issue.

Other proposals to address the CS problem make use of other relations between
users or items, i.e., social networks. For example, the authors in Zhang et al. (2010)
use social tags to enrich the descriptions of items in a user-tag-object tripartite graph
model; while the authors in Ma et al. (2011) instead use a social trust network to enrich
the user profile. Another example is Victor et al. (2008), where authors analyze the
impact of the connections on the quality of recommendations. While this group of
techniques shows promising results, it is still limited by the fact that obtaining fine-
grained and accurate features is a complex and time-consuming task. Moreover, those
other existing relationships might not always be available or meaningful for the target
domain. See Elahi et al. (2018) for a good and general introduction to recommendation
complicating scenarios (e.g., the CS problem).

In this work, we adopt feature weighting techniques because they have shown promis-
ing results in recent years to the point of becoming the current state of the art.

2.3 Contributions of this work

The work at hand builds on foundations and results realized in our previous work, but
considerably extends it. We therefore present in the following our novel contributions,
and connect them to previous work.

In Deldjoo et al. (2015a,b, 2016a,d), Elahi et al. (2017) and Cremonesi et al.
(2018), we proposed a CB-MRS that implements a movie filter according to average
shot length (measure of camera motion), color variation, lighting key (measure of
contrast), and motion (measure of object and camera motion). The proposed features
were originally used in the field of multimedia retrieval for movie genre classification
(Rasheed et al. 2005) and have a stylistic nature which is believed to be in accordance
with applied media aesthetics (Zettl 2013) for conveying communication effects and
simulating different feelings in the viewers. For this reason, these features were named
mise-en-scene features.

Since full movies can be unavailable, costly or difficult to obtain, in Deldjoo et al.
(20164d) it was studied whether movie trailers can be used to extract mise-en-scéne
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visual features. The results indicated that they are indeed correlated with the cor-
responding features extracted from full-length movies and that feeding the features
extracted from movie trailers and full movies into a similar CB-MRS results in a com-
parable quality of recommendations (both superior to the genre baseline). The main
shortcoming of this work is that it used a small dataset for evaluation (containing only
167 movies and the corresponding trailers). Additionally, the number of visual fea-
tures was limited (only five features, cf. Rasheed et al. 2005). Due to these restrictions,
the generalizability of our findings in Deldjoo et al. (2016d) may be limited; also see
Sect. 6.3 for a discussion of limitations.

In Deldjoo et al. (2016b, ¢, 2018d) we specifically addressed the under-researched
problem of combining visual features extracted from movies with available semantic
information embedded in metadata or collaborative data available in users’ interaction
patterns in order to improve offline recommendation quality. To this end, for multi-
modal fusion (i.e., fusing features from different modalities) in Deldjoo et al. (2016b),
for the first time, we investigated adoption of an effective data fusion technique named
canonical correlation analysis (CCA) to fuse visual and textual features extracted from
movie trailers. A detailed discussion about CCA can be found in Sect. 3.2. Although
a small number of visual features were used to represent the trailer content (similar
to Deldjoo et al. 2016d), the results of offline recommendation using 14K trailers
suggested the merits of the proposed fusion approach for the recommendation task.
In Deldjoo et al. (2018d) we extended (Deldjoo et al. 2016b) and used both low-level
visual features (color- and texture-based) using the MPEG-7 standard together with
deep learning features in a hybrid CF and CBF approach. The aggregated and fused
features were ultimately used as input for a collective sparse linear method (SLIM)
(Ning and Karypis 2011) method, generating an enhancement for the CF method.
While the results for each of these two features improved the genre and tag baselines,
the best results were achieved with the CCA fusion approach. Although (Deldjoo et al.
2018d) significantly extended the previous works (Deldjoo et al. 2016b) both in terms
of the content and the core recommendation model, it ignored the role of the audio
modality in the entire item modeling.

Finally, in Deldjoo et al. (2016¢), we used factorization machines (FM) (Rendle
2012) as the core recommendation technique. FM is a general predictor working
with any real valued feature vector and has the power of capturing all interactions
between variables using factorized parameters. FM was used specifically with the
goal of encoding the interactions between mise-en-scene visual features and metadata
features for the recommendation task. Please note that in the present work, we neither
use FM nor SILM, specifically because one of the main contributions of the work at
hand is to propose and simulate a novel technique for new item recommendation for
which FM or SLIM are not applicable.

In a different research line, in Elahi et al. (2017), we designed an online movie rec-
ommender system which incorporates mise-en-scene visual features for the evaluation
of recommendations by real users. We performed an offline performance assessment
by implementing a pure CB-MRS with three different versions of the same algo-
rithm, respectively based on (i) conventional movie attributes, (ii) mise-en-scéne visual
features, and (iii) a hybrid method that interleaves recommendations based on the pre-
viously noted features. As a second contribution, we designed an empirical study
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and collected data regarding the quality perceived by the users. Results from both
studies showed that the introduction of mise-en-scene, together with traditional movie
attributes, improves the quality of both offline and online recommendations. However,
the main limitation of Elahi et al. (2017) is that we used basic late fusion by interleav-
ing the recommendations to combine recommendations generated by different CBF
systems.

In summary, although we achieved relevant progress, some limitations of our pre-
vious work remain unsolved: (i) solely visual and/or text modalities were considered,
forgetting the rich audio information (e.g., conversations or music); (ii) better fusion
techniques are required to fully exploit the complementary information from (sev-
eral) modalities; (iii) visual content can be represented with richer descriptors; and
(iv) the recommendation model used was either a CBF model based on KNN or a
CBF+CF model based on SLIM, both of which are not capable to deal with new item
CS scenarios.

In this paper, we enhance these previous achievements and go beyond the state of
the art in the following directions:

1. We propose a multimodal movie recommendation system which exploits estab-
lished multimedia aesthetic-visual features; block-level audio features; state-of-
the-art deep visual features; and i-vectors audio features. Apart from the use of
automated content descriptors, the system uses as input movie trailers instead
of complete movies, which makes it more versatile, as trailers are more readily
available than full movies. We show that the proposed CB-MRS outperforms the
traditional use of metadata. To the best of our knowledge, this has not previously
been achieved, existing systems being limited to the use of either visual and/or
textual modalities (Deldjoo et al. 2016¢,d, 2017a) or basic low-level descriptors
(Yang et al. 2007; Mei et al. 2011);

2. We propose a practical solution to the CS new-item problem where user
behavior data are unavailable, and therefore neither CF nor CBF using user-
generated content are applicable. Our solution consists of a two-step approach
named collaborative-filtering-enriched content-based filtering (CFeCBF) to lever-
age the collaborative knowledge about warm items and exploit it for CBF on cold
items.

3. To achieve multimodal MRS, we adopt an early fusion approach using canonical
correlation analysis (CCA), which was successfully tested in our previous works
(Deldjoo etal. 2016b, 2018d) for combining heterogeneous features extraced from
different modalities (audio, visual and textual). CCA is often used when two types
of data (feature vectors in training) are assumed to correlate. We hypothesize that
this is relevant in the movie domain and that combining audio, visual, and textual
data enriches the recommendations.

4. We evaluate the quality of the proposed movie genome descriptors by two com-
prehensive wide and articulated empirical studies: (i) a system-centric experiment
to measure the offline quality of recommendations in terms of accuracy-related
metrics, i.e., mean average precision (MAP) and normalized discounted cumula-
tive gain (NDCG); and beyond-accuracy metrics (Kaminskas and Bridge 2016),
i.e., list diversity, distributional diversity, and coverage; (ii) a user-centric online
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Fig.1 The proposed collaborative-filtering-enriched content-based filtering (CFeCBF) movie recommender
system framework

experiment involving 101 users, computing different subjective metrics, including
relevance, satisfaction, and diversity.

5. We publicly release the resources of this work to allow researchers to test their
own recommendation models. The dataset was already released partly in Deldjoo
et al. (2018c) while the code is now available on Github.’

3 Proposed recommendation framework

The main processing stages involved in our proposed CFeCBF-MRS are presented
in Fig. 1. As previously mentioned, the only input information, apart from the col-
laborative one, is the movie trailers. First, we perform pre-processing that consists
of decomposing the visual and audio channels into smaller and semantically more
meaningful units. We use frame-level and block-level segmentation for the audio
channel. For video, we use the frames captured at 1 fps. The next step consists of
computing meaningful content descriptors (cf. Sect. 3.1), namely: (i) multimedia—
audio and visual features; and (ii) metadata—movie genres. Features are aggregated
temporally using different video-level aggregation techniques, such as statistical sum-
marization, Gaussian mixture models (GMM), and vectors of locally aggregated
descriptors (VLAD) (Jégou et al. 2010). Features are fused by using the early fusion
method CCA (cf. Sect. 3.2). At this stage, each video is represented by a feature vector
of fixed length, which is referred to as the item profile. A collaborative recommender
is trained on all available user-item interactions in order to model the correlations

7 https://github.com/MaurizioFD/CFeCBF.
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encoded in users’ interaction patterns, using the similarity of ratings as an indicator of
similar preference. As the last step, the CFeCBF weighting scheme is trained on the
given item profile and collaborative model to discover the hybrid feature weights. The
learned feature weights are then applied to a CBF recommender able to provide rec-
ommendations for cold items. Each of these steps is detailed in the following sections.

3.1 Rich item descriptions to model the movie genome

Similar to biological DNA, which represents a living being, multimedia content infor-
mation can be seen as the genome of video recommendation, i.e., the footprint of both
content and style. In this section, we present the rich content descriptors integrated
into the proposed movie recommendation system to boost its performance. These fea-
tures were selected based on their effectiveness in representing multimedia content in
various domains and comprise both audio and visual features (Deldjoo et al. 2018b, ¢).

3.1.1 Audio features

The exploited audio features are inspired by the fields of speech processing and music
information retrieval (MIR) and by their successful application in MIR-related tasks,
including music retrieval, music classification, and music recommendation (Knees
and Schedl 2016). We investigate two kinds of audio features: (i) block-level features
(Seyerlehner et al. 2011) which consider chunks of the audio signal known as blocks
and are therefore capable of exploiting temporal aspects of the signal; and (ii) i-vector
features (Eghbal-Zadeh et al. 2015) which are extracted at the level of audio segments
using audio frames. Both approaches eventually model the feature at the level of the
entire audio piece; by aggregating the individual feature vectors across time.

Block-level features We extract block-level features (BLF) from larger audio segments
(several seconds long) as proposed in Seyerlehner et al. (2010). They can capture
temporal aspects of an audio recording and have been shown to perform very well
in audio and music retrieval and similarity tasks (Seyerlehner et al. 2011) and can be
considered state of the art in this domain.

The BLF framework (Seyerlehner et al. 2010) defines six features. These capture
spectral aspects (spectral pattern, delta spectral pattern, variance delta spectral pat-
tern), harmonic aspects (correlation pattern), rhythmic aspects (logarithmic fluctuation
pattern), and tonal aspects (spectral contrast pattern). The feature extraction process
in the block-level framework is illustrated in Fig. 2. Based on the spectrogram, blocks
of fixed length are extracted and processed one at a time. The block width defines how
many temporally ordered feature vectors comprise a block. The hop size is used to
account for possible information loss due to windowing. After having computed the
feature vectors for each block, a global representation is created by aggregating the
feature values along each dimension of the individual feature vectors via a summa-
rization function, which is usually expressed as a percentile, as illustrated in Fig. 3. A
more technical and algorithmic discussion can be found in Seyerlehner et al. (2010).
The extraction process results in a 9948-dimensional feature vector per video.
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Fig. 3 Obtaining a global feature representation from individual blocks in the block-level framework,
according to Seyerlehner et al. (2010)

I-vector features I-vector is a fixed-length and low-dimensional representation con-
taining rich acoustic information, which is usually extracted from short segments
(typically from 10 s to 5 min) of acoustic signals such as speech, music, and acoustic
scene. The i-vector features are computed using frame-level features such as mel-
frequency cepstral coefficients (MFCCs). In a movie recommendation system, we
define total variability as the deviation of a video clip representation from the average
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representation of all video clips. I-vectors are latent variables that capture total vari-
ability to represent how much an audio excerpt is shifted from the average clip. The
main idea is to first learn a universal background model (UBM) to capture the average
distribution of all the clips in the acoustic feature space using a dataset containing a
sufficient amount of data consisting of different movie clips. The UBM is usually a
Gaussian Mixture Model (GMM) and serves as a reference to measure the amount of
shift for each segment where the i-vector is the estimated shift.

The block-diagram of the i-vector pipeline, from frame-level feature extraction to
i-vector extraction and finally to recommendation, is shown in Fig. 4. The framework
can be decomposed into several stages: (i) Frame-level feature extraction MFCCs have
proven to be useful features for many audio and music processing tasks (Logan et al.
2000b; Ellis 2007; Eghbal-Zadeh et al. 2015). They provide a compact representation
of the spectral envelope are also a musically meaningful representation (Eghbal-Zadeh
et al. 2015), and are used to capture acoustic scenes (Eghbal-Zadeh et al. 2016). Even
though it is possible to use other features (Suh et al. 2011), we avoid the challenges
involved in feature engineering and instead focus on the timbral modeling technique.
We used a 20-dimensional MFCCs feature; (ii) Computation of Baum—Welch statistics
In this step, we collect sufficient statistics by adapting UBM to a specific segment. This
is a process in which a sequence of MFCC feature is represented by the Baum—Welch
(BW) statistics (0-th and 1-st order Baum—Welch statistics) (Lei et al. 2014; Kenny
2012) using a GMM as prior; (iii) I-vector extraction I-vector extraction refers to the
extraction of total factors from BW statistics. This step reduces the dimensionality of
the movie clip representations and improves the representation for a recommendation
task; (iv) Recommendation Recommendation is effected by integrating the extracted
i-vector features in a CBRS.

During the training phase, the UBM is trained on the items in the training dataset
and is used as an external knowledge source for the test dataset. In the testing step,
test i-vectors are extracted using the models from the training step and the MFCCs
of the test set. In the supervised approach, these i-vectors are projected by LDA in
the training step. For the i-vector extraction, we used 20-dimensional MFCCs. For
the items in the training set (in each fold), we trained a UBM with either 256 or 512
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Gaussian components and a different dimensionality of latent factors (40, 100, 200,
400). We performed a hyper-parameter search and reported the best results obtained
over fivefold cross-validation for each evaluation metric.

3.1.2 Visual features

The visual features we selected for our experiments were previously used in other
domains, including image aesthetics, media interestingness, object recognition, and
affect classification. We selected two types of visual features: (i) aesthetic visual fea-
tures, a set of features mostly associated with media aesthetics, and (ii) deep learning
features extracted from the fc7 layer of the AlexNet deep neural network, initially
developed for visual object recognition, but extended and used in numerous other
domains. Several aggregation methods were also performed with these features, with
the goal of obtaining video-level descriptors from the frame-level set of extracted
features.

Aesthetic-visual features the three groups of features and their early fusion combi-
nations were aggregated in a standard statistical aggregation scheme based on mean,
median, variance, and median absolute deviation. In a work discussing the measure-
ment of coral reef aesthetics, the authors in Haas et al. (2015) propose a set of features
inspired by the aesthetic analysis of artwork (Li and Chen 2009) and photographic
aesthetics (Datta et al. 2006; Ke et al. 2006). This collection of features is derived
from related domains, such as photographic style, composition, and the human per-
ception of images, and was grouped into three general features types: color-related,
texture-related and object-related.

The color-related features have 8 main components. The first elements consist of
the average channel values extracted from the HSL and HSV color spaces. A color-
fulness measure was created by calculating the Earth Mover’s Distance, Quadratic
Distance and standard deviation between two distributions: the color frequency in
each of the 64 divisions of the RGB spectrum and an equal reference distribution.
The hue descriptors contained statistical calculations for pixel hues: number of hues
present, number of significant hues for the image etc. The hue models are based on the
distance between the current picture and a set of nine hue models considered appeal-
ing for humans inspired by the models presented in Matsuda (1995). The brightness
descriptor calculates statistics regarding image brightness, including average bright-
ness values and brightness/contrast across the image. Finally, average HSV and HSL
values were calculated while taking into account the main focus region and rule of
thirds compositional guideline (Obrador et al. 2010).

The texture-related features have 6 components. The edge component calculates
statistics based on edge distribution and energy, while the fexture component calculates
statistics based on texture range and deviation. Also entropy measures were calculated
on each channel of the RGB color space, generating a measure of randomness. A
three-level Daubechies wavelet transform (Daubechies 1992) was calculated for each
channel of the HSV space along with the values for the average wavelet. A final
texture component was based on the low depth-of-field photographic composition
rule, according to the method described by Datta et al. (2006).
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The object-related features have 11 components. These components are mostly
based on the largest segments in an image obtained through the method proposed in
Datta et al. (2006), which is based on the k-means clustering algorithm. The area,
centroids, values for the hue, saturation, and value channels, average brightness val-
ues, horizontal and vertical coordinates, mass variance and skewness for the largest,
and therefore most salient, segments each constitutes a component of this feature
type. Color spread and complementarity also represented a component, while the last
component calculates hue, saturation, and brightness contrast between the resulting
segments.

As previously mentioned, this set of features is highly correlated to the human
observer, some components being heavily based on psychological or aesthetic aspects
of visual communication. For example, the hue model component calculates the dis-
tance between the hue model of a certain image and models considered appealing to
humans, inspired by the work of Matsuda (1995). Also, some general rules of pho-
tographic style were used, rules previously shown to have a high impact on human
aesthetic perception, therefore generating more pleasant images and videos (Krages
2012). For example, the authors in Liu et al. (2010) modify images in order to achieve
a better aesthetic score, one of the rules applied for this optimization being the rule of
thirds.

We used these features in our experiments, both separated into the three main
feature types (color, texture and object) and in an early fusion concatenated descriptor
for each image in the video. Regarding the aggregation method, we used four standard
statistical aggregation schemes based on mean, median, variance and median absolute
deviation.

Deep-learning features Deep neural networks have become an important part of the
computer vision community, gathering interest and gaining importance as their results
started performing better than more traditional approaches in different domains. The
ImageNet Large Scale Visual Recognition Competition (ILSVRC) gives the opportu-
nity to test different object recognition algorithms on the same dataset, consisting of
a subset of 1.2 million images and 1000 different classes taken from the ImageNet®
database. The AlexNet (Krizhevsky et al. 2010) deep neural network was the winner of
the competition in 2012, achieving a top-5 error rate of 15.3%—a significant improve-
ment over the second—best entry—that year. The authors also ran experiments on the
ILSVRC 2010 dataset, concluding that the top-1 and top-5 error rates of 37.5% and
17% were again improvements on previous state-of-the-art approaches. One of the
novelties introduced by this network was the ReLU (Rectified Linear Units) nonlin-
earity output function, which was able to achieve faster training times than networks
working with more standard functions like f(x) = tanh(x) or f(x) = (1 + e )~
instead using f(x) = max(0, x).

AlexNet consists of 5 convolutional layers and 3 fully connected layers, ending
with a final, 1000-dimensional softmax layer. The input of the network consists of
a 224 x 224 x 3 image, therefore requiring the original image to be resized if the
resolution is different. The five convolutional layers have the following structure: the
first layer has 96 kernels of size 11 x 11 x 3; the second, 256 kernels of size 5 x 5 x 48;

8 http://www.image-net.org/.

@ Springer


http://www.image-net.org/

308 Y. Deldjoo et al.

the third, 384 kernels of size 3 x 3 x 256; the fourth, 384 kernels of size 3 x 3 x 192;
and the final, fifth convolutional layer, 256 kernels of size 3 x 3 x 192. The fully
connected layers all have 4096 neurons, and the output of the final one is fed into a
softmax layer that creates a distribution for the 1000 labeled classes. This generates
a network with 60 million parameters and 650, 000 neurons; thus, in order to reduce
overfitting on the original dataset, some data augmentation solutions were employed,
including image translations, horizontal reflections, and the alteration of the intensity
of the RGB channels and a dropout technique (Hinton et al. 2012).

Given the good performance of the fc7 layer in tasks related to human preference, we
chose to extract the outputs of this layer for each frame of our videos, thus obtaining a
4096-dimensional descriptor for each image. We then obtain a video-level descriptor
through two types of aggregation methods: standard statistical aggregation, where
we calculate the mean, median, variance, and median absolute deviation, and VLAD
(Jégou et al. 2010) aggregation followed by PCA for dimensional reduction, with three
different sizes for the visual word codebook: k € {32, 64, 128}.

3.1.3 Metadata features

We also use two types of editorial metadata features to serve as baselines: movie genre
and cast/crew features.

Genre features For every movie, genre features are used to serve as metadata baselines.
Genre Features (18 categories): Action, Adventure, Animation, Children’s, Com-
edy, Crime, Documentary, Drama, Fantasy, Film Noir, Horror, Musical, Mystery,
Romance, Sci-Fi, Thriller, War, and Western. The final genre feature vector is a binary,
18-dimensional vector.’

Cast/crew features For every movie, the corresponding cast and crew have been down-
loaded from TMDB'? using the available API and movie ID mapping provided by
Movielens20M. The feature vector contains 162K Boolean features. Each movie is
associated, on average, with 25 features.

3.2 Multimodal fusion

Two main paradigms of fusion exist in the literature of multimedia processing (Snoek
et al. 2005): (i) late fusion which generates separate candidate results created by
different systems and fuses them into a final set of results; the main limitation of
late fusion methods is that they do not consider the correlation among features and
are computationally more expensive during training; (ii) early fusion which tries to
map multiple feature spaces to a unified space, in which conventional similarity-based
evaluation can be conducted.

Motivated by the above, in current work we exploit a multimodal early fusion
method based on canonical correlation analysis (CCA) that was successfully tested in

9 While presenting the results, we will use the genre metadata as the baseline for evaluation, as it is prevalent
in the domain. Furthermore, we refrain from using user-generated metadata such as tag features in this work,
since in a new item CS situation these features cannot exist.

10 https://www.themoviedb.org/.
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our previous works (Deldjoo et al. 2016b, 2018d). CCA is a technique for joint fusion
and dimensionality reduction across two or more (heterogeneous) feature spaces,
which is often used when two set of data are believed to have some underlying cor-
relation. We hypothesize that this is relevant in movie domain and combining audio,
visual and textual data enriches the recommendations and training. Additionally, since
the focus of the recommendation model in our work is on a CF-enriched CBF model
(see Sect. 3.3), we have realized that currently the proposed method functions bet-
ter with a lower size of the feature vectors. As CCA reduces the dimensionality of
the final descriptor, it is is leveraged greatly in the proposed recommendation frame-
work. Finally, CCA can be pre-computed and used in an off-the-shelf manner making
it a convenient descriptor in offline experiments (as opposed to late fusion methods
Deldjoo et al. 2018b).

We review the concept of CCA here for our methodology. Let X € R and
Y € R9*" be two sets of features in which p and g are the dimensions of features
extracted from the n items. Let Sy, = cov(x) € R?*P and S,, = cov(y) € R?*¢
be the within-set and S, = cov(x, y) € RP*4 be the between-set covariance matrix.
Let us further define § € R?PT9*(P+9) a5 the overall covariance matrix—a complete
matrix which contains information about associations between pairs of features—
represented as follows:

o Sxx Sxy) _ [ covx) cov(x,y)
S_<Syx Sy§>_(cov(y,x) cov(y) ) @)

pxn

The aim of CCA is to identify a pair of linear transformations, represented by
X* = WXT X and Y* = WyT Y, that maximizes the pairwise correlation across two
feature sets given by

. U cov(X*, Y™)
arg max corr( X", V") = —————— 3)
Wy, Wy var(X*) - var(Y*)

where cov(X*, Y*) = WXTSXy W, and var(X*) = WXTS“ W, and var(Y*) =
Wl wy.

In order to solve the above optimization problem, we use the maximization proce-
dure described in Haghighat et al. (2016). The CCA model parameters W, and W,
are learned on trained items (warm items) and leveraged both in the training and test
phases. We investigate two ways to perform fusion: (i) via concatenation (abbreviated
by ‘ccat’) and (ii) via summation (abbreviated by ‘sum’) of the transformed features.

3.3 The cold-start recommendation model

The core recommendation model in our system is a standard pure CBF system using
Eq. (4) to compute similarities between different pair of videos:
fiDf b

—_— “4)
1613 ;] %

sim(i, ) =
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where f; € R"F is the feature vector for video i, || ||2F is the Frobenius norm and n g
is the number of features. We are interested in finding the diagonal weight matrix
D e R"F*"F "which represents the importance of each feature.

An underlying assumption is that a CF model will achieve much higher recommen-
dation quality than CBF and will be better able to capture the user’s point-of-view. We
use a CF model to learn D, cast into the following optimization problem:

2
argmin 3P — s®) ”F +a|D|% + 8D )
D

where S(°F) is the item-item collaborative similarity matrix from which we want to
learn, S is the item-item hybrid similarity metric presented via Eq. (4), D is the
feature weight matrix, o and § are the weights of the regularization terms.

We call this model collaborative-filtering-enriched content-based filtering
(CFeCBF). The optimal D is learned via machine learning, applying stochastic gra-
dient descent with Adam (Kingma and Ba 2014), which is well suited for sparse and
noisy gradients. The code is available on Github.!! CFeCBF is a wrapper method for
feature weighting; therefore, it does not learn weights while building the model but
rather relies on a previously trained model and then learns feature weights as a sub-
sequent step. Since the model we rely on is collaborative, we can only learn weights
associated with features that occur in warm items. This affects how well the algorithm
can perform in scenarios where the available features are too sparse; in this case, the
number of features appearing in s but not in warm items will tend to increase, reducing
the number of parameters in the model.

It is important to point out that while it will be possible to learn a zero collaborative
similarity for items having a common feature, it will not be possible to learn anything
for items with no common features. Therefore, content-based similarity poses a hard
constraint on the extent to which collaborative information can be learned. As content-
based similarity is a function of the item features, the sparser this matrix is the less
information will be learnable from a collaborative model. This could be a challenge
when using Boolean features that tend to be sparse, but much less of one when using
real-valued attributes like the multimedia descriptors, which result in dense feature vec-
tors. A consequence of this is that the success of applying CFeCBF on a given dataset
depends not only on how accurate the collaborative model is, but also on whether its
similarity structure, resulting from the items having common features, is sufficiently
compatible with that of the content-based model.'> CFeCBF requires a two-step train-
ing procedure. In the first step, we aim to find the optimal hyper-parameters for a
collaborative model by training it on warm items and selecting the optimal hyper-
parameters via cross-validation. Since we want a single hyper-parameters set, not one
for each fold, we chose those with the best average recommendation quality across all
the training folds.

1 https://github.com/MaurizioFD/CFeCBF.

12 A our experiments have showed, the best collaborative similarity will not necessarily yield the best
weights.
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Once the collaborative model is available, the second step is to learn weights by
solving the minimization problem described in Eq. (5). As the purpose of this method
is to learn D, or feature weights, the optimal hyper-parameters for the machine learning
phase are chosen via a cold item split to improve the CBF on new items. Figure 5 shows
how a cold item split is performed: split A represents the warm items, that is, items
for which we have interactions and that we can use to train the collaborative model,
and split B represents cold items that we use only for testing the weights. All reported
results for pure CBF and CFeCBF are reported on split B.

4 Experimental study A: Offline experiment

In this experiment, we investigate offline recommendation in cold- and warm-start
scenarios. The specific experimental setup is presented in the following section.

4.1 Data

We evaluated the performance of the proposed MRS on the MovieLens-20M (ML-
20M) dataset (Harper and Konstan 2016), which contains user-item interactions
between users and an up-and-running movie recommender system. We employ five-
fold cross-validation (CV) in our experiments by partitioning the items in our dataset
into 5 non-overlapping subsets (item-wise splitting of the user-rating matrix). Differ-
ent folds will have different cold items. Similar to Adomavicius and Zhang (2012),
we built the test split by randomly selecting 3000 users, each having a minimum of
50 ratings in their rating profile, in order to speed up the experiments on the many
feature sets. The items those users interacted with will be considered cold items; see
split B in Fig. 5. The remaining items and interactions will be part of the training set.
The reported results are referred to split B. Meanwhile, split A is used to perform
parameter tuning. The characteristics of the data split are shown in Table 2. The sig-
nificantly higher number of ratings per item in the training set (A) is due to the fact
that it contains more users, and hence more interactions, than the test set (B).

Table 2 Characteristics of the evaluation dataset used in the offline study: |I/| is the number of users, |Z]|
the number of items, |R| the number of ratings

- IR IRI _RI i
ML-20M || |Z| IR| 20 7] WARIZL (density)
Train (A) 138 K 12.6 K 10M 72.46 793.65 0.0057
Test (B) 3K 48K 212K 70.67 44.16 0.0144
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4.2 Objective evaluation metrics

For assessing performance in the offline experiments, we compute the two cate-
gories of metrics, accuracy metrics (cf. Sect. 4.2.1) and beyond-accuracy metrics (cf.
Sect. 4.2.2). The name and definition of the specific metrics computed is provided in
the corresponding sections.

4.2.1 Accuracy metrics

Mean average precision (MAP) is a metric that computes the overall precision of a
recommender system, based on precision at different recall levels (Li et al. 2010). It
is computed as the arithmetic mean of the average precision (AP) over the entire set
of users in the test set, where AP is defined as follows:

1 N
P = V) k; P@k - rel(k) (6)

where rel(k) is an indicator signaling if the kth recommended item is relevant,
i.e., rel(k) = 1, or not, i.e., rel(k) = 0; M is the number of relevant items; and
N is the number of recommended items in the top N recommendation list. Note that
AP implicitly incorporates recall, because it considers relevant items not in the rec-
ommendation list. Finally, given the AP equation, MAP will be defined as follows:

1
MAP = — Z AP, (7)
|U| ue|U|

Normalized discounted cumulative gain (NDCG) is ameasure for the ranking quality of
the recommendations. This metric was originally proposed to evaluate the effectiveness
of information retrieval systems (Jarvelin and Kekaldinen 2002). It is nowadays also
frequently used for evaluating music recommender systems (Liu and Yang 2008; Park
and Chu 2009; Weimer et al. 2008). Assuming that the recommendations for user u are
sorted according to the predicted rating values in descending order, DC G, is defined
as follows:

N

Tu,i
DCG, = E _— 8
t S loga(i+ 1) ©

where r,, ; is the true rating (as found in test set 7') for the item ranked at position i for
user #, and N is the length of the recommendation list. Since the rating distribution
depends on users’ behavior, the DCG values for different users are not directly com-
parable. Therefore, the cumulative gain for each user should be normalized. This is
done by computing the ideal DCG for user u, denoted as IDCG,,, which is the DCG,
value that provides the best possible ranking, obtained by ordering the items by true
ratings in descending order. Normalized discounted cumulative gain for user u is then
computed as follows:
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DCG
NDCGy = Tpea- ©)
u

Finally, the overall normalized discounted cumulative gain NDCG is computed by
averaging NDCG, over the entire set of users.

4.2.2 Beyond-accuracy metrics

The purpose of a recommender system is not only to recommend relevant items to the
user based on their past behavior but also to facilitate exploration of the catalogue,
helping to discover new items that the user might find interesting. Beyond-accuracy
metrics try to assess if the recommender is able to diversify its recommendations for
different users and leverage the whole catalogue or if it is focused on just a few highly
popular items. In this study, we focus on the following measures:

Coverage of a recommender system is defined as the proportion of items which have
been recommended to at least one user (Herlocker et al. 2004):
7]
coverage = m (10)
where | /] is the cardinality of the test item set and |i | is the number of items in / which
have been recommended at least once. Recommender systems with lower coverage
are limited in the number of items they recommend.

Intra-list diversity Is another important beyond-accuracy measure. It gauges the extent
to which recommended items are different from each other, where difference can relate
to various aspects, e.g., genre, style or composition. Diversity can be defined in several
ways. One of the most common is to compute the pairwise distance between all items
in the recommendation set, either averaged (Ziegler et al. 2005) or summed (Smyth
and McClave 2001). In the former case, the diversity of a recommendation list L is
calculated as follows:

ZieL Z distl'ﬁj
jeL\i

IntraL(L) = L (L = 1)

(1)

where dist; j is some distance function defined between items i and j. Common
choices are inverse cosine similarity (Ribeiro et al. 2012), inverse Pearson correlation
(Vargas and Castells 2011), or Hamming distance (Kelly and Bridge 2006). In our
experiments we report a diversity computed using the genre of the movies and cosine
similarity.

Inter-list diversity or inter-user diversity measures the uniqueness of different users
recommendation lists (Zhou et al. 2010). Given two users i and j, and their recom-
mendation list L, the inter-list distance can be calculated by:

q(Li, Lj)

InterL(L;,L;)=1—
nterL(L;, Lj) ]

(12)
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where g(L;, L ) is the number of common items in recommendation lists of length [ L|.
Inter L(L;, L;) = 0 indicates identical lists and Inter L(L;, Lj) = 1, completely
different ones. The mean distance is obtained by averaging Inter L(L;, L) over all
pairs of users such thati # j.

A model which tends to frequently recommend the same set of items will result in
similar recommendation lists and low diversity, whereas a recommender better able to
tailor its recommendations to each user will exhibit higher diversity (Zhou et al. 2010).
In this respect, inter-list diversity and intra-list diversity are complementary. Consider
a Top Popular recommender (i.e., one that recommends the most popular items). Its
recommendations might have high intra-list diversity if they involve movies with
different characteristics; therefore, a user will perceive them as diverse. However, all
users will receive the same recommendations and both item coverage and inter-list
diversity will be very low.

While an increase in diversity can indicate that the recommender is better able to
offer personalized recommendations, it should be taken into account that the lowest
diversity, and item coverage, will be obtained by always recommending the same
items, whereas the highest will be obtained by a random recommender. This is another
example of the accuracy-diversity trade-off.

In order to better understand how much the proposed techniques truly contribute
towards more diverse and idiosyncratic recommendations across all users, in addition
to the above beyond-accuracy metric, we also computed the metrics entropy, Gini
coefficient, and Herfindahl (HHI) index (Adomavicius and Kwon 2012). These met-
rics provide different means for measuring distributional dispersion of recommended
items across all users, and are therefore referred to as aggregate diversity. If recom-
mendations are concentrated on a few popular items, the recommender will have low
coverage and low diversity in terms of entropy and HHI but high Gini Index. If recom-
mendations are more equally spread out across all candidate items, the recommender
will exhibit high diversity and coverage but low Gini Index (Adomavicius and Kwon
2012). These metrics provide an overview of the recommender system from a system-
wide point of view and are useful for assessing its behavior when deployed on a real,
business-oriented system.

The distributional dispersion metrics are defined as follows:

Entropy = — 3 268y, ¢ (13)
— recy rec
iel
S w21 =1 rec(d) i
Gini —index = ; 7l e, (14)
1
Herfindahl —index = 1 — — Zrec(i)z 15)
FeCt ier

where rec(i) refers to the number of times item i has been recommended over all
users, rec; the total number of recommendations (i.e., cutoff value times the number
of test users), I the cold items set, and |/| its cardinality. Note that while the Gini
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index and Herfindahl index have a value range between 0 and 1, Shannon entropy is
not bounded by 1.

4.3 Collaborative filtering model

Following the results of Ferrari Dacrema et al. (2018) we chose as collaborative model
RP3beta (Paudel et al. 2017) which demonstrated a very competitive recommendation
quality at a very small computational cost, since it does not require ML. RP3beta is a
graph-based algorithm which models a random walk between two sets of nodes, users
and items. Each user is connected to the items he/she interacted with and each item is
similarly connected to the users. The model consists of an item-item similarity matrix
which represents the transition probability between the two items, computed directly
via the graph adjacency matrix, easily obtainable from the URM. The similarity values
are are elevated at a coefficient alpha and divided by each item’s popularity elevated
to a coefficient beta, the latter acting as a reranking phase which takes the popularity
bias into account.

4.4 Hyper-parameter tuning

The proposed approach requires two types of parameter tuning. Firstly, it is necessary
to train and tune the CF model. Since we want a single optimal hyper-parameter set we
train the CF recommender on all the train folds separately and then select the hyper-
parameters corresponding to the best average recommendation quality on all folds,
measured with MAP. This constitutes a robust validation and testing methodology,
and reduces the risk to overfit. Each fold will be associated with its own collaborative
model since different folds will correspond to different cold items split. Secondly, the
tuning of the hyper-parameters of the feature weighting machine learning is performed
in a similar way, again optimizing MAP. We searched the optimal hyper-parameters
via a Bayesian search (Antenucci et al. 2018) using the implementation of Scickit-
optimize.'? As for different aggregation methods designed for the audio and visual
features, we chose the best performing ones with regards to the metric under study.

4.5 Overall computational time and complexity

In this section, we provide general information regarding runtimes and overall com-
putational complexity of the subsystems in the proposed framework.

Regarding the extraction of the visual features, this process performs above the
real-time frame rate of the movies (25 or 30 frames per second). We have performed
feature extraction on a computer with Intel Xeon E5-1680 processor with 8 cores, 16
threads and a base frequency of 3.00 GHz, 192 GB RAM and an NVIDIA 1080TI GPU
card with 3584 CUDA cores. While the extraction of AlexNet features was handled by
the GPU, with an average speed of 62.8 processed frames per second, the extraction

13 https://scikit-optimize.github.io/.
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of the aesthetic visual features was done on the CPU, in parallel, using 7 of the 8
available cores and recording an average speed of 38.3 processed frames per second.

The feature weighting phase has a low computational complexity as it requires,
for each epoch, to compute the gradient for each collaborative similarity value and
compute the prediction error by using the item features. It is therefore linear in terms
of both the number of descriptors and in terms of the number of similarities which in
turn grows quadratically on the items. In terms of runtime, on an Intel Xeon E3-1246
3.50GHz with 32GB RAM, learning the weights on the descriptors of length 200
takes 15min on a single core, including the time required to perform the validations
needed by early stopping.

4.6 Performance analysis: accuracy metrics

The experiments performed in Study A can be divided into four different categories,
as presented in Table 3: baseline experiments using the genre and cast/crew metadata
features, both editorially created (cf. Sect. 3.1.3)'%; unimodal experiments using tradi-
tional and state-of-the-art (SoA) audio and visual features (cf. Sect. 3.1); content-based
multimodal experiments, where the proposed canonical correlation analysis (CCA)
is used as an early fusion method (cf. Sect. 3.2); and finally, collaborative-filtering
enhanced multimodal experiments, where the systems from the previous multimodal
experiments are enhanced through the use of collaborative filtering (cf. Sect. 3.3). In
the latter two, multimodal, categories, we report and analyze the performance of all
combinations from the proposed unimodal features and the genre baseline.!

As a general observation, we see that the unimodal visual and audio features con-
stantly outperform the baseline metadata systems. The best performance is obtained
by Deep visual features, improving the genre baseline by 53.0% in terms of NDCG
and by 42.8% in terms of MAP. Even the lowest performing unimodal feature, i.e., i-
vector, still achieves a 14.4% increase for NDCG and a 7.1% increase for MAP over
the baseline. We further observe that the Deep feature outperforms the traditional AVF
feature in the visual category, while in the audio category, the reverse pattern occurs,
i.e., the traditional BLF feature has a better performance than the i-vector audio feature
for both metrics.

As presented in Sect. 3.2, our multimodal approaches use CCA as a fusion method.
We compared the CCA approach with a simple concatenation method, as well as with
a weighted late fusion Borda count method, as described in Deldjoo et al. (2018b).
We chose CCA as our early fusion method because all results were better for the CCA
approach. For example, in the case of the i-vec + genre multimodal combination,
CCA achieved a 9.5% MAP increase and a 20.2% NDCG increase over the simple
concatenation method in the pure CBF approach, while in the CFeCBF approach,

14 Note that we could not use tags as a feature in Study A, since the tags available in this dataset are
user-generated. For cold items, no interactions with users have occurred yet, so no tags could be provided.
While it could be possible the users added tags without providing a rating, this does not solve the underlying
problem as it presumes a kind of interaction. Therefore the available tags for each items will be related to
its popularity, some items will acquire tags easily while others may have none for quite some time.

15 Note that we use the genre features as the main baseline due to their widespread usage and the fact that
genre and cast had similar performance in almost all reported metrics.
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Table 3 Performance of various features: i-vector (Audio), BLF (Audio), Deep (Visual), and AVF (Visual),
editorial-metadata, in terms of accuracy metrics NDCG and MAP. For fusion, we report the results for the
CCA fusion variation (either ccat or sum) that lead to the best performance (cf. Sect. 3.2). The features (or
feature combination) which outperform genre significantly are shown in bold (p < 0.05)

Feature name CCA fusion Accuracy Metrics

NDCG MAP
Base
cast(EM) - 0.0088 0.0041
genre(EM) - 0.0083 0.0042
Unimodal
i-vec (A: SoA) - 0.0095 0.0045
BLF (A: traditional) - 0.0111 0.0055
Deep (V: SoA) - 0.0127 0.0060
AVF (A: traditional) - 0.0108 0.0047
Multimodal (pure CBF)
i-vec + Genre (A + EM) sum 0.0101 0.0046
i-vec + Deep (A + V) sum 0.0089 0.0042
i-vec + AVF (A + V) ccat 0.0077 0.0038
i-vec + BLF (A) sum 0.0094 0.0046
AVF + Genre (V + EM) sum 0.0086 0.0039
AVF + BLF (V + A) sum 0.0091 0.0052
AVF + Deep(V) sum 0.0086 0.0041
Deep + Genre (V + EM) sum 0.0078 0.0038
Deep + BLF (V + A) sum 0.0102 0.0053
BLF + Genre(A + EM) ccat 0.0090 0.0046
Multimodal (CFeCBF)
i-vec+Genre (A + EM) sum 0.0186 0.0078
i-vec + Deep (A + V) sum 0.0176 0.0083
i-vec + AVF (A + V) sum 0.0121 0.0062
i-vec + BLF (A) ccat 0.0177 0.0083
AVF+Genre (V + EM) sum 0.0192 0.0097
AVF + BLF (V + A) sum 0.0102 0.0048
AVF + Deep(A + V) sum 0.0191 0.0097
Deep + Genre (V + EM) sum 0.0117 0.0059
Deep + BLF (A) sum 0.0111 0.0052
BLF + Genre(A + EM) ccat 0.0120 0.0059

A audio, V visual, EM editorial metadata

the CCA fusion method achieved a 151.6% increase in terms of MAP and a 181.8%
increase in terms of NDCG. These results confirm not only that CCA fusion produces
good results on its own but also that it increases the power of collaborative filtering
approaches by heavily reducing the size of the feature vector. Furthermore, the use of
an early fusion method such as CCA allows us to easily create systems that outperform
the late fusion method mentioned in Deldjoo et al. (2018b), in both accuracy metrics.
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For the multimodal CBF approach, we observe that the CCA fusion of the best
performing unimodal audio and visual features (i.e., Deep and BLF) leads to the best
multimodal results. More precisely, Deep + BLF achieves a 22.8% improvement over
the baseline (0.0102 vs. 0.0083) in terms of NDCG and a 26.1% increase in terms
of MAP (0.0053 vs. 0.0042). Similarly, the combination i-vec + genre performed
strongly, improving on the baseline by 21.6% for NDCG (0.0101 vs. 0.0083) and
9.5% for MAP (0.0046 vs. 0.0042). This result was surprising, since both individual
features, genre and i-vec, had a weaker performance in the unimodal experiment. In
fact, in all genre combinations, such as AVF + genre, BLF + genre, and i-vec + genre,
we can see an improvement in performance. This suggests that the genre feature has
an information-complementary nature with other modalities, which can be leveraged
using the CCA fusion. However, the combination of Deep + genre is an exception,
as one can observe a decrease in performance. This may be due to the correlation
between the two.

The multimodal CFeCBF approach aims to enable the recommendation of cold
items by leveraging collaborative knowledge of warm items. The proposed method
was applied on CCA multimodal approaches, as presented in the CBF multimedia
approach. Looking at the performance globally, one can observe that the CFeCBF
multimodal approach improves the pure CBF multimodal systems in all 10 combina-
tions along NDCG and in 8 combinations along MAP; the few non-improved feature
combinations, i.e., AVF + BLF and Deep + BLF, already performed well in pure CBF
experiments. For NDCG, the average growth factor is 67%, with the minimum equal
to 7% for Deep + BLF and the maximum equal to 123% for AVF + Genre. For MAP,
the average growth factor is 68%, with the minimum equal to — 7% for AVF + BLF
and the maximum equal to 148% for AVF + Genre. When compared with the genre
baseline, the proposed CFeCBF method improves the features, on average, by 79.75%
for MAP and 72.6% for NDCG.

One final step was taken for the validation of these results, namely performing
the significance tests as pairwise comparisons between the best performing systems
and the best performing baseline genre. For both NDCG and MAP metrics, we per-
formed statistical significance tests using the multiple comparison test provided by the
statistical and machine learning toolbox in MATLAB!® (function multcompare()),
in which we adopted Fisher’s least significant difference to compensate for multiple
tests when performing all pairwise comparisons. Detailed information about the test
can be found in Sheskin (2003). The three best performing systems, i-vec + genre,
AVF + genre, and AVF + Deep, show significant improvements over the baseline with
p < 0.05, where the improvement along NDCG is 124.1%, 131.33%, and 130.12%,
respectively, and that along MAP equal to 85.7%, 130.12%, and 130.12%, respec-
tively. These results indicate the effectiveness of the proposed approach in dealing
with very different kinds of features and its ability to embed collaborative knowledge
in a CBF recommender. In particular, the systems showing significant improvements
have lower dimensionality for the descriptors than the others. This suggests that learn-
ing feature weights becomes harder as the number of dimensions increases. Applying

16 https://www.mathworks.com/help/stats/multiple-comparisons.html.
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dimensionality reduction techniques is therefore beneficial when dealing with very
long descriptors.

4.7 Performance analysis: beyond-accuracy metrics

In this section, we report the results for beyond-accuracy metrics. The results are sum-
marized in Table 4 (reports diversity metrics computed on the various recommendation
lists: inter-list diversity and intra-list diversity) and Table 5 (reports all the aggregate
diversity metrics, which are instead computed on the overall number of times each
item was recommended to any user: Item coverage, Shannon entropy, Gini index, and
Herfindahl Index).

From Table 4, we can observe that intra-list diversity (intral) exhibits similar val-
ues across all cases. As previously mentioned, this diversity is computed with respect
to the genre of movies, so a higher diversity would mean recommendations of hetero-
geneous genres, while a lower diversity would mean recommendations of the same
genre. Following this definition, we expect that a recommender based only on genre as
a feature will exhibit the lowest intralL diversity, which is in fact what we do observe.
If we consider that as baseline value, we can see that all other features—metadata,
unimodal or multimodal—achieve slightly higher diversity while not penalizing rec-
ommendation accuracy; this increase is significant in all cases. In terms of inter-list
diversity (interL), results are more varied. We can see that multimodal recommenders,
both pure CBF and hybrid CFeCBEF, yield higher diversity in most cases, meaning
that given any two users, the average number of items they have in common in their
recommendation lists is going to be lower. The increased InterL diversity for CFeCBF
is statistically significant in almost all cases. This suggests that multimodal recom-
menders will be less prone to concentrate their recommendations on a small subset of
items.

From Table 5, we can see the results for aggregate diversity metrics. Note that while
greater diversity will result in higher values for Item coverage, Shannon entropy, and
Herfindahl Index, it will drive Gini index closer to zero. These metrics allow us to look
at the recommender from the point of view of the whole system instead of that of the
user, which is important when deploying recommenders as a part of a business model.
We first focus on Item coverage, which tells us the portion of cold items the system was
able to recommend. We can immediately see that the baseline recommenders using
metadata have poor coverage: only half of the available items were recommended at
least once. Most models based on multimodal features, instead, exhibit significantly
higher coverage—up to more than 90%, meaning they are able to explore the catalogue
much better without sacrificing recommendation quality. The other metrics measure
the number of times each item has been recommended. Compared to the coverage,
they provide the additional information about the number of occurrences. Within a
certain coverage value, the distribution of items can be very different. For example, in
the case of a Top Popular recommender in a warm item scenario, the final coverage will
be higher than the length of the recommendation list because some users will already
have already interacted with those items and therefore other, less popular, items will be
recommended to them. Distribution diversity metrics allow us to determine the extent
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Table 4 Performance of various features in terms of beyond-accuracy metrics for list diversity. For fusion,
we report the results for the CCA fusion variation (either ccat or sum) that lead to the the best performance
(cf. Sect. 3.2). Results in bold show the features (or feature combinations) that outperform genre significantly

(p < 0.05) along the respective metric

Feature name CCA fusion List diversity

IntralL InterL
Base
cast (EM) - 0.8990 0.8794
genre (EM) - 0.8886 0.9035
Unimodal
i-vec (A: SoA) - 0.8994 0.9322
BLF (A: traditional) - 0.8994 0.9522
Deep (V: SoA) - 0.8992 0.8641
AVF (A: traditional) - 0.8994 0.9528
Multimodal (pure CBF)
i-vec + Genre (A + EM) sum 0.8965 0.9577
i-vec + Deep (A + V) sum 0.8994 0.9602
i-vec + AVF (A + V) ccat 0.8994 0.7682
i-vec + BLF (A) ccat 0.8995 0.8772
AVF + Genre (V + EM) (sum, ccat) 0.8927 0.9536
AVF + BLF (V + A) (sum, ccat) 0.8995 0.8724
AVF + Deep(V) ccat 0.8994 0.6890
Deep + Genre (V + EM) ccat 0.8964 0.9633
Deep + BLF (V + A) ccat 0.8995 0.9548
BLF + Genre(A + EM) ccat 0.8969 0.9616
Multimodal (CFeCBF)
i-vec + Genre (A + EM) sum 0.8981 0.9304
i-vec + Deep (A + V) sum 0.8995 0.9535
i-vec + AVF (A + V) (ccat, ssum) 0.8995 0.9584
i-vec + BLF (A) sum 0.8995 0.9533
AVF + Genre (V + EM) (sum, ccat) 0.8992 0.7532
AVF + BLF (V + A) sum 0.8995 0.9373
AVF + Deep(V) ccat 0.8995 0.9549
Deep + Genre (V + EM) (ccat, sum) 0.8983 0.9361
Deep + BLF (V + A) ccat 0.8995 0.9599
BLF + Genre(A + EM) ccat 0.8986 0.9396

A audio, V visual, EM editorial metadata

to which the recommender is trying to diversify its recommendations. As an example,
consider the 4 cases having coverage between 94.5 and 96.5%, with an interval of just
2% of all items. These cases exhibit a Gini index varying between .65 and .78, meaning
that there is a difference in the number of times those items were recommended. In
particular, the increase in coverage was accompanied in this case by more unbalanced,
and therefore less diverse, item occurrence.
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Table 5 Performance of various features in terms of beyond-accuracy metrics for aggregate diversity.
Results in bold show the features (or feature combinations) that outperform genre significantly (p < 0.05).
For each feature combination, we only report the results for the CCA method that has the best performance
(either ccat or sum)

Feature name CCA fusion Distributional diversity Item
Gini Entropy HHI Cov
Base
cast (EM) - 0.7652 7.2672 0.9879 0.5348
genre (EM) - 0.7424 7.4525 0.9903 0.5435
Unimodal
i-vec (A: SoA) - 0.7055 8.2934 0.9932 0.9276
BLF (A: traditional) - 0.6614 8.5983 0.9952 0.9412
Deep (V: SoA) - 0.7992 7.2659 0.9864 0.6615
AVF (A: traditional) - 0.6583 8.6165 0.9952 0.9336
Multimodal (pure CBF)
i-vec + Genre (A + EM) sum 0.6510 8.6752 0.9957 0.9431
i-vec + Deep (A + V) sum 0.6283 8.7951 0.9960 0.9960
i-vec + AVF (A + V) ccat 0.7794 6.1634 0.9768 0.2569
i-vec + BLF (A) ccat 0.8022 7.2558 0.9877 0.6412
AVF + Genre (V + EM) ccat 0.6754 8.4935 0.9953 0.8811
AVF + BLF (V + A) (ccat, *: sum) 0.6595* 6.7429 0.9872 0.3014
AVF + Deep(V) (ccat) 0.8037 5.7369 0.9689 0.2147
Deep + Genre (V + EM) (ccat, *:sum) 0.6361 8.7644 0.9963 0.9388*
Deep + BLF (V + A) (ccat) 0.6402 8.7184 0.9954 0.9655
BLF + Genre(A + EM) (ccat) 0.6381 8.7520 0.9961 0.9459
Multimodal (CFeCBF)
i-vec + Genre (A + EM) sum 0.7232 8.0490 0.9930 0.7769
i-vec + Deep (A + V) sum 0.6719 8.5653 0.9953 0.9275*
i-vec + AVF (A + V) sum 0.6342 8.6499 0.9958 0.8736
i-vec + BLF (A) sum 0.6667 8.5831 0.9953 0.9299
AVF + Genre (V + EM) ccat 0.7742 6.0510 0.9753 0.2345
AVF + BLF (V + A) (sum, *:ccat) 0.7150 8.0789 0.9937 0.7664*
AVF + Deep(V) ccat 0.6504 8.5740 0.9955 0.8691
Deep + Genre (V + EM) sum 0.7170 8.1647 0.9936 0.8258
Deep + BLF (V + A) ccat 0.6439 8.7395 0.9960 0.9595
BLF + Genre(A + EM) ccat 0.7007 8.2965 0.9939 0.8619

A audio, Vvisual, EM editorial metadata, Entropy Shannon entropy, HHI Herfindahl, /tem Cov item coverage
* is used to identify which of the ccat and sum variations produced the best result

We can see how there is a significant difference between Multimodal and Base
recommenders in terms of Gini index, meaning that the multimodal recommenders,
both pure and hybrid, have more balanced item distribution. The combination of very
high item coverage and improved distributional diversity metrics suggest that the
collaborative machine learning step does not add a popularity bias to the feature
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weights, on the contrary CFeCBF is less subject to it than the Base recommenders.
Moreover, we see that Shannon Entropy increases, meaning that the recommender
is getting less “predictable” in the recommendations it will provide. This confirms
what was observed in terms of interL diversity. The Herfindahl index is known to
have a small value range when applied to recommender systems, as we can see in our
experiments where its value ranges from 0.96 to 0.99. Compared to the other indices,
it is less sensitive to items being recommended only a few times, due to its quadratic
nature, but more sensitive to items being recommended a high number of times. Its
values confirm the increased diversity achievable by Multimodal recommenders in
almost all cases for pure CBF and in all cases for hybrid CFeCBF.

4.8 Cold to warm item transition

While the core of our experimental study is aimed at cold start items, in a real case
scenario we expect some interactions to become available over time as the users interact
with the cold items. For practical use it is interesting to assess when it is appropriate
to change the recommendation model from a content based, either pure or CFeCBFE,
to a collaborative model. To this end we design a brief study, aiming to assess at
which interaction density an item transition from cold to warm, allowing the use of
CF methods.

It is already well known that, depending on the dataset, even a few interactions may
be sufficient to outperform CBF approaches (Pilaszy and Tikk 2009).

4.8.1 Experimental protocol

To simulate a realistic cold to warm transition we add some interactions to the cold
items. Those interactions are taken from the original test set of that fold. Since this
study requires to create a new data split, with a denser train and a sparser test set, the
results here reported are not comparable to the ones reported in the previous study.

We report two different experimental settings, one preserves the popularity distri-
bution of the items, the other does not. The reader should notice that, being sampled
in different, ways, the test set of the two experiments are different and the results are
not directly comparable.

Random sampling In order to preserve the statistical distribution of the interactions
and the impact of the item’s popularity, the new train interactions for the cold items are
randomly sampled, with no constraints applied. This will result in a mixture of popular
items having a few interactions and unpopular items having none. This experiment
allows to assess what happens in a realistic case in which some cold items will be
popular and therefore collect interactions much faster, while others will not. This is
motivated by the fact that CF algorithms, which CFeCBF is learning from, are sensitive
to the popularity distribution and altering such distribution will result in biased CF
models. The original test data is sampled so that 2% of its interactions become new
train data and 98% constitute the new test data. To show the behaviour at different
densities, the train data is further divided in a smaller set only containing 0.5% of the
original test interactions.
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Fixed number of interactions While the previous experiment models a real case sce-
nario more accurately, it leaves open the question of how significant is the effect of
the popularity bias on the results. To this end also build a different split which con-
tains a fixed number of train interactions for the cold items. This creates an artificial
popularity distribution which will change the behaviour of the CF model. The number
of interactions we chose is 1 and 5. This will result in a perfectly balanced train set.
In this case the test data is composed by the original test data minus 4 interactions for
each item.

This new train data is therefore composed by the original train data plus the inter-
actions sampled from the test set and is used to train all algorithms: CBF, CF and
CFeCBF. The optimal parameters remain those selected in the previous phase when
no interactions were available. In a real case scenario it would be impractical to run
a new tuning of the model’s parameters after each few interactions are added. It is
instead more realistic for this tuning phase to be executed again only once a sufficient
amount of new data is available.

4.8.2 Result discussion

The results for the random split are reported in Table 6 for both accuracy metrics and
Item Coverage.!” As it is possible to see, in terms of accuracy metrics the recommen-
dation quality of pure CBF remains constant as the transition progresses. CFeCBF,
instead, changes its recommendation quality, in some cases improving over the cold
item case, in others not. This is due to the evolving CF model it is learning from.

The most important thing to observe is that the pure collaborative algorithm,
RP3beta, is immediately able to outperform all CBF and CFeCBF models in terms
of accuracy metrics. It should be noted that Movielens, the dataset from which the
interactions are taken, tends to exhibit high recommendation quality for collaborative
algorithms which makes this cold to warm transition very fast. Consider that Warm
0.5% corresponds to an average of 1 x 10! interactions per item and Warm 2.0%
of 4 x 10~ interactions per item. Looking at the recommendation quality alone is
however misleading. In terms of diversity it is possible to see that CF has a remarkably
low item coverage. This means that the CF algorithm is still not able to explore the
catalogue, being confined to a marginal 6% of the available items. The result can be
explained by the significant popularity bias of the dataset, hence a few items account
for a sizable quota of the interactions, while many others have much fewer. This
behaviour means that the CF model is recommending only a few popular items, being
unable to recommend the vast majority of them. CF fails completely to allow the user
a broad exploration of the catalogue and offers very little personalization. Moreover,
if the items are not seen by the users, it will be very difficult to collect the interactions
needed for them to become warm items, the risk being to keep them in a cold state for
very long. CFeCBF, on the other hand, has a very high Item Coverage, which allows
a broader exploration of the catalogue, yielding to a higher probability cold items will
be rated and a more effective CF model could be applied at a later stage.

17 For brevity we did not report all beyond accuracy metrics.
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If we look at the results for the fixed number of interactions experiment in Table 7,
we can observe a different behaviour. The CBF and CFeCBF models maintain their
almost stable recommendation quality while CF increases. However, as opposed to
the previous case, we can see that the CF advantage grows less steeply with respect to
CFeCBF even though the train data is much denser, 1 and 4 as opposed to 4 x 1071,
Moreover, the CF Item Coverage is comparable or higher than CFeCBFE. This allows
to state that the behaviour of the CF algorithm in the random sampling experiment is
strongly influenced by the significant popularity bias of the dataset.

To summarize, in terms of accuracy metrics CF algorithms are able to outperform
CBF and CFeCBF when even just a few interactions are available, more so if the dataset
has a strong popularity bias. However CBF and CFeCBF maintain a sizable advantage
in terms of diversity metrics and Item Coverage. Depending on the specific use-case
or application, and therefore the desired balance between accuracy and catalogue
exploration, a different strategy may be adopted. If the main focus is on accuracy,
then as soon as the item has an interaction it can be considered as warm. The reader
should note that, while Movielens has a high popularity bias, other datasets with a less
pronounced bias will exhibit a less steep CF quality improvement. If the focus is on
improving catalogue exploration to reduce the popularity bias effect then the target
number of interactions per item may be pushed further.

5 Experimental study B: insights from a preliminary user study about
perceived quality

In this section, we describe an empirical study whose goal is not to recommend new
movies, as in the experimental study A, but to understand to what extent the proposed
movie genome is perceived as useful when deployed in a real MRS. The developed
system uses a pure CBF recommender based on the KNN algorithm and measures the
utility of the recommendation as perceived by the user in terms of accuracy, novelty,
diversity, level of personalization, and overall satisfaction. In this study, we inten-
tionally avoid the discussion of hybridization and focus instead only on six unimodal
recommendation approaches, classifiable in 3 categories: (i) metadata: genre and tag,
(i1) audio: i-vectors and BLF, and (iii) visual: Deep features and AVF. We use only
the unimodal recommendation schemes presented in the experimental study A. The
reason for this is to avoid overloading users with too many recommendation choices,
and thus to be able to obtain more reliable responses from users collectively. Note
that in this study, the tags feature is considered because, as stated, the study’s focus
is no longer on new movie recommendation (as in study A) and tags serve as a rich
semantic baseline.

Our preliminary studies in a similar direction have been published in Elahi et al.
(2017) which focused on a single visual modality (Elahi et al. 2017), and in Deldjoo
et al. (2018b), which used a lower number of participants (74 vs. 101). In addition,
compared to Deldjoo et al. (2018b), we performed better sanity checks and removed
unreliable user input. Further information is provided in the following sections.

@ Springer



Y. Deldjoo et al.

326

106’0 69200 L0SO0 €8L8°0 08100 LTE00 00000 00000 00000 elRqedd
40
80 1200°0 ¥¥00°0 CCLLO L2000 ¢S00°0 L£080 L2000 1500°0 (NF + V)a1uaD + 4T1d
91160 §200°0 8¥00°0 81€6'0 000 9%00°0 L6€6'0 L2000 £500°0 (V) 4714 + doag
I1CL0 §200°0 L¥00°0 69190 €000 86000 LYLLO €000 65000 (NE + A) 21uD + deoqq
LTS80 £€200°0 L¥00°0 £€008°0 82000 ¥€00°0 68980 €000 29000 (A + V) dooQ + AV
0L9S°0 82000 8700°0 67550 1€00°0 LS00°0 08610 62000 LS00°0 (V+A) dT9 + JAV
6L1T0 9€00°0 §900°0 8¥El'0 £€00°0 0L00°0 L88T0 §200°0 05000 (NH + A) 219D + AV
CSSLO L1000 9€00°0 9IvL0 0€00°0 1900°0 LSILO 1€00°0 §S00°0 (V) 4719 + 09A-1
86¢8°0 12000 #7000 Ly¥8°0 §€00°0 £€900°0 L1890 92000 5000 (A + V) dAV + 99A-1
80160 92000 8¥00°0 89160 L2000 ¥500°0 ¥616°0 £€00°0 #9000 (A + V) doaQ + 29a-T
9L6L0 €200°0 9%00°0 06LL0 €000 09000 €L6L°0 L2000 £€500°0 (INF + V) 21U9D) + 00A-1
£6CY'0 L2000 £500°0 0€Cs0 1¥00°0 8L00°0 1¥9¢€°0 62000 96000 (NF)?1ueD
80€L0 ¥200°0 L¥00°0 991L0 1€00°0 1900°0 8€0L0 1€00°0 09000 (NAseD
442240
66650 L2000 £500°0 £€965°0 1€00°0 86000 §265°0 1€00°0 86000 (NF)?1uD
91vS0 §200°0 L¥00°0 6250 1€00°0 65000 96TS0 1€00°0 65000 (WanseD
asng

AOD WL dVIN DOAN AOD W] dVIN DOAN AOD WL dVIN DOAN

G wIBA T WIep PIoD

OLIBUQDS UONEN[BAH

QUIBU 2INjed

135 Urex) 9Y) Ul SUONORIAUI G SeY SWI 159) YIB ¢ UL UT 39S UTRI) ) U UONIRIAUI | A[IOBXD Sy
WA IS OB [ ULIDA UT ‘P[OD T8 ST J$3) ) P]0,) OLIRUIIS UOTILN[BAD U] "25LIIA0D) W] PUE SOINAW AJBINOOE J0J OLIEUIOS UONISURT) WM 0] P[0 d) 10J SISy £ d|qel

pringer

As



Movie genome: alleviating new item cold start in movie... 327

5.1 Perceived quality metrics

The goal of the current study is to measure how the user perceives the quality of
the proposed recommender system. Perceived quality is as an indirect indicator of a
recommenders potential for persuasion (Cremonesi et al. 2012). It is defined as the
degree to which the users judge recommendations positively and appreciate the over-
all experience of the recommender system. We operationalize the notion of perceived
quality in terms of five metrics (Ekstrand et al. 2014): Perceived accuracy (also called
Relevance)—measures how much the recommendations match users’ interests, prefer-
ences, and tastes; Satisfaction—measures global users’ feelings about their experience
with the recommender system; Understands me—relates to perceived personalization
or the user’s perception that the recommender understands their tastes and can effec-
tively adapt to them; Novelry'8—measures the extent to which users receive new
(unknown) recommendations; Diversity—measures how much users perceive recom-
mendations as different from each other, e.g., movies from different genres.

5.2 Evaluation protocol

To measure the user’s perception of the recommendation lists according to the five
quality metrics explained above, we adopt the questionnaire proposed in Knijnenburg
et al. (2012). This instrument contains 22 questions to assess various aspects of the
recommendation lists. For convenience, these questions are shown in Table 8. As
suggested by the authors from Ekstrand et al. (2014), the questions are asked in a
comparative mode instead of seeking absolute values.

We developed MISRec (Mise-en-Scene Movie Recommender), a web-based testing
framework for the movie search and recommendation domain, which can easily be
configured to facilitate the execution of controlled empirical studies. Some screenshots
of the system are presented in Fig. 6. MISRec is powered by a pure CBF algorithm
based on KNN and supports users with a wide range of functionalities common in
online video-streaming services such as Netflix.!” MISRec contains the same cata-
log of movies used in the first study (see Sect. 4). Users can browse the catalog of
movies, retrieve detailed descriptions of each, rate them, and receive recommenda-
tions. MISRec also embeds an online questionnaire system that allows researchers to
easily collect quantitative and qualitative information from the user. The first proto-
type of MISRec was used for conducting an empirical study on the contribution of
stylistic visual features to movie recommendation, and the results were published in
Elahi et al. (2017). A more recent development of MISRec powered by the proposed
movie genome features was published in Deldjoo et al. (2018b). An extension of the
system was also developed in Deldjoo et al. (2017b) to use the system in an interactive
manner e.g., for kid movie recommendation using cover photos of the movies as the
system activator.

18 Note that we could not use Novelty as an evaluation criterion in study A because Novelty is defined in
terms of item popularity, which is available for warm items but not for cold items.

19 https://www.netflix.com.
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Table 8 The list of questions (Ekstrand et al. 2014; Knijnenburg et al. 2012) used to measure the perceived
quality of recommendations. Note that answers/scores given to questions marked with a + contribute
positively to the final score, whereas scores to questions marked with a — are subtracted

Factor/question (W. 1. = which list, W. r. = which recommender)

Percieved accuracy

W. 1. has more movies that you find appealing? (Q17 +)

W. 1. has more movies that might be among the best movies you see in the next year? (Q19 +)
W. 1. has more obviously bad movie recommendations for you? (Q6 —)

W. . does a better job of putting better movies on the left? (Q9 +)
Diversity

W. 1. has more movies that are similar to each other? (Q22 -)

W. 1. has a more varied selection of movies? (Q7 +)

W. 1. has movies that match a wider variety of moods? (Q13 +)

W. 1. would suit a broader set of tastes? (Q2 +)

Understands me

W. 1. better understands your taste in movies? (Q12 +)

W. 1. would you trust more to provide you with recommendations? (Q18 +)
W. . seems more personalized to your movie taste? (Q14 +)

W. r. more represents mainstream tastes instead of your own? (Q3 -)
Satisfaction

W. 1. would better help you find movies to watch? (Q8 +)

W. 1. would you be more likely to recommend to your friends? (Q16 +)

W. 1. of recommendations do you find more valuable? (Q11 +)

W. 1. would you rather have as an app on your mobile phone? (Q20 +)

W. 1. would better help to pick satisfactory movies? (Q1 +)

Novelty

W. 1. has more movies you do not expect? (Q21 +)

W. 1. has more movies that are familiar to you? (Q4 -)

W. L. has more pleasantly surprising movies? (Q5 +)

W. 1. has more movies you would not have thought to consider to watch? (Q10 +)

W. 1. provides most new suggestions? (Q15 +)

Our main target audience is users aged between 19 and 54 who have some familiar-
ity with the use of the web but have never used MISRec before the study (to control for
the potentially confounding factor of biases or misconceptions derived from previous
uses of the system). The total number of recruited subjects who also completed the
task was 101 (73 male, 28 female, mean age 25.64 years, std. 6.61 years, min. 19
years, max. 54 years). Data collection were carried out mostly from master students
at three universities: Politecnico Di Milano Italy, JKU Linz Austria and Politehnica
di Bucharest, Romania attending the course of Recommender Systems or similarly
related courses. They were trained to perform the study, were given written instruc-
tions on the evaluation procedure, and were regularly supervised by Ph.D. students
and a PostDoc researcher during their activities. The interaction begins with a sign-up
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Fig.6 Screenshots of the MISRec web application, designed for movie recommendation and empirical stud-
ies. The user needs to register, answer demographic and personality questionnaires, select his/her favorite
genre, and rate some movies by looking at their trailers. Then, he/she is presented with 3 recommendation
lists and a list of questions about perceived quality

process, where each participant (user) is asked to specify his/her e-mail address, user
name, and password (see Fig. 6 top-middle). For users who wish to remain anony-
mous, we provide the option to conceal their true email address. Afterwards, the user
is asked to provide basic demographics (age, gender, education, nationality, and num-
ber of movies watched per month, consumption channels, some optional social media
IDs, such as Facebook, Twitter, and Instagram). After the user has registered for the
system and provided his/her basic demographic information, he/she is asked to fill out
the Ten-Item Personality Inventory (TIPI) questionnaire (see Fig. 6 middle-left) so
that the system can assess his/her Big Five personality traits (openness, conscientious-
ness, extroversion, agreeableness, and neuroticism) (McCrae and John 1992). Then,
for preference elicitation (Chen and Pu 2004), the user is invited to browse the movie
catalog from his/her favorite genre and to scroll through productions from different
years in a user-friendly manner (see Fig. 6 center and middle-right). The user initially
selects four movies as his/her favorites.

The user can watch the trailers for the selected movies and provide ratings for them
using a 5-level Likert scale (1 = low interest in/appreciation for the movie to 5 = high
interest in/appreciation for the movie). The user can also report a movie (if the trailer
is not correctly displayed) and the movie will be skipped (see Fig. 6 bottom-left).
After that, on the basis of these ratings and the content features described in Sect. 3.1,
three categories of recommendation lists are presented to the user: (i) audio-based
recommendation using BLF or i-vectors as features, (ii) visual-based recommendation
using AVF or Deep as features, (iii) metadata-based recommendation using genre or
tag as features. In each of the three recommendation categories, the recommendations
are created using one of the two recommendation approaches (e.g., BLF or i-vectors
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for (i), and so on), chosen randomly. Since watching trailers is a time-consuming
process, we decided to show only four recommendations in each of the three lists.

It is important to note that since we do not wish to overload the user with too much
information, we avoid presenting him/her with six recommendation lists using all of the
features. This would be the case in a within-subject design, where each subject uses all
variants of the factorial designs simultaneously, i.e., six recommendation approaches
in this case. Instead, we decided to use a between-subject design, where factorial
designs are randomized for a given subject. Since our final goal is to have the user
compare the three recommendation classes (i.e., audio vs. visual vs. metadata) at the
same time, the way we implemented the between-subject design randomizes each of
the two instances of each category for a given user. Therefore, each user compares one
out of eight possible combinations: (BLF, AVF, genre), (i-vector, AVF, genre), (BLF,
AVF, tag), (i-vector, AVF, tag) and so forth.?? This gives us more flexibility in handling
all this information and obtaining reliable responses. Finally, to avoid possible biases
or learning effects, the positions of the recommendation lists are randomized for each
user.

5.3 Results

In this section, we present the user-perceived accuracy, satisfaction, personalization,
diversity, and novelty. Before analyzing the survey responses, we cleaned the data by
removing users who did not complete the questionnaire. We also removed users who
were too fast in giving answers (less than 15% of the median time of all users) since
we do not consider these users reliable. As the results of these filtering steps, 21 users
are filtered out. Furthermore, users were asked to specify how many of the movies in
each recommendation list they have seen. A list is included in the analysis only if the
user has seen at least one movie from it. For example, if a user chooses a list as the
recommendation most accurately matching his/her taste but has previously specified
that he/she has not seen any movie from that list, we discard that list from his/her
responses.

We compute a score for each recommender/feature with respect to the five perfor-
mance measures. When recommendation lists are presented to the user, he/she has
to choose one list out of the three as an answer to each question (cf. Table 8). Each
selected list counts for a vote for the respective recommender that has created the list.
Note that answers/scores given to questions marked with a 4 contribute positively to
the final score, whereas scores to questions marked with a — contribute negatively.
Finally, all votes given to each recommender are summed along each dimension (per-
formance measure) and expressed as percentages, i.e., the relative frequency with
which each recommender has been selected as the best one. The final results for the
five dimensions are presented in Table 9 and discussed below.

20 Note that we could not use tag as a feature in Study A since tags are user-generated content. In cold
items, no interactions with users have occurred yet; therefore, no tag could have been provided as a feature.
Tags could be obtained via cross-domain techniques, but those are a vast research area and outside the scope
of this paper. Tags could also be obtained by manual/editorial tagging, but that would be time-consuming
and expensive, and therefore not suitable for a high rate of new items, which is the scenario of main interest
for this paper.
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Table 9 Results of the user study with respect to the five tested perceived quality criteria in a real movie
recommender system

Feature name  Feature type  Relevance  Diversity ~ Understands me  Satisfaction ~ Novelty

tag Metadata 0.2632 0.1625 0.3133 0.2514 0.0577
genre Metadata 0.2526 0.2857 0.2410 0.2404 0.1538
i-vector Audio 0.1263 0.1875 0.0361 0.1093 0.2115
BLF Audio 0.0316 0.1250 0.0120 0.0601 0.0769
deep Visual 0.2421 0.1750 0.3253 0.2459 0.1923
AVF Visual 0.0842 0.0625 0.0723 0.0929 0.3077

Perceived accuracy/relevance The following algorithms are perceived as the most
accurate (relevant) by the subjects: tag, genre, and the SoA visual deep feature, with
26%, 25%, and 24% of the votes, respectively. User-generated tags are rich semantic
descriptors and, as expected, the respective feature is evaluated the best by the sub-
jects; however, the difference from genre and deep features remains very small (1-2%).
Meanwhile, the lowest performance is obtained by the traditional audio and visual fea-
tures BLF and AVF with 3% and 8% of the votes, respectively. I-vector aggregates 13%
of the votes. These results are in agreement with our expectations in that, as a standalone
feature, the proposed SoA feature, deep, and i-vector show the most promising results
compared with traditional multimedia features; e.g., Deep achieves a result of 24% in
comparison with 8% for AVF, which represents an improvement of about 300%.

Understands me and satisfaction The results of users’ perceived personalization (cap-
tured by the questions in the “Understands Me” category) and the overall feeling
of the experience with the recommender system (captured by the questions in the
“Satisfaction” category) show superior performance for Deep and tag features, with
32% and 31% of the votes, while genre is ranked lower, with 24% of the votes. For
user satisfaction, the best performance is perceived for tag, deep, and genre features,
with 25%, 24%, and 24% of the user votes, respectively. The lowest performance is
obtained by the traditional audio and visual features (between 7 and 10%). We can also
note that the results along the above perceived quality metrics are highly correlated
(Pearson’s correlation coefficient is 0.9735). The only exception is audio, in which we
can find a difference in two dimensions between the performance obtained by SoA
i-vectors (compare 3.6% vs. 11%) and by traditional BLFs (compare 1.2% vs. 6%).
The results of “Understands me” and “Satisfaction” are also highly correlated with
perceived accuracy (Pearson’s correlation coefficients are 0.9390 and 0.9897, respec-
tively.). This can indicate that the users’ perception of personalization and satisfaction
is the same as accuracy and that users respond to the questions belonging to these
categories in a similar way.

Diversity The results for the perceived diversity indicate that the best performance is
achieved by genre (29%)—substantially higher than i-vector, Deep, and tag, with 19%,
18%, and 16% of the votes, respectively. On the other hand, both traditional visual and
audio features, AVF and BLF, show the lowest perceived diversity, attracting only 13%
and 6% of the votes, respectively. The results for diversification are slightly different
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than those gained in our original user study (Deldjoo et al. 2018b) and show that
users perceived recommendation by genre the most diverse (while perceived highly
relevant too). Perhaps this is because users do not mentally compute list diversification
based on genre diversity but also consider other attributes (e.g., the appearance of the
DVD cover) when they are asked to indicate the most diversified recommendation
list. Another reason could be that one of the questions explicitly asks for diversity of
mood, and the same genre can have movies with very different moods (e.g., in sci-fi).

Novelty Results for novelty are surprising in several ways. Firstly, it is the traditional
visual features, AVF, which have the highest amount of perceived novelty, gaining
as much as 31% of votes, followed by the SoA audio and visual features i-vector
and deep with 21% and 19% of the votes, respectively. Meanwhile, the tag feature
has attracted a very small amount, i.e., only 5%, of the scores for perceived novelty.
Since tags are user-assigned, they have a high semantic content and capture something
specific about the user perception of the movie. Therefore, similar tags may yield to
recommendations not perceived as novel.

Globally, the results of our study on perceived recommendation quality indicate that
perceived quality of recommendations is high for the SoA visual and audio features
(Deep and i-vector) along most investigated performance measures. The exception
is the user’s perceived personalization (“Understands Me”) for which i-vector per-
forms poorly (but Deep visual performs best). For the remaining dimensions, these
SoA features are ranked in the top 3 of all investigated features. Especially when it
comes to novelty, SoA audio and visual features by far outperform metadata features.
Overall, each feature has its merits, which again support our proposal for multimodal
recommendation approaches.

6 Conclusions and future perspectives

In this work, we presented a framework for new movie recommendation by exploiting
rich item descriptors and a novel recommendation model. We compared our system
to some standard metadata-based methods that use genres and casts (editorial meta-
data). Specifically, the proposed system integrates multimedia aesthetic visual features
and audio block-level features, as well as novel, state-of-the-art deep visual features
and i-vector audio features, together with genre and cast features, all of which are
referred to as the movie genome. For exploiting the complementary information of
different modalities, we proposed CCA to fuse movie genome descriptors into shorter
and stronger descriptors. Lastly, we presented a novel recommendation model that
leverages a two-step approach named collaborative-filtering-enriched content-based
filtering (CFeCBF). It exploits the collaborative knowledge of warm items (videos
with interactions) to weight content information for cold items (videos without inter-
actions) and improve the ability to recommend cold videos, for which interactions
and user-generated content are rare or unavailable. The proposed system represents a
practical solution for alleviating the CS problem, in particular, the extreme CS new
item problem, where newly added items lack any interaction and/or user-generated
content.
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6.1 Discussion of the results

For evaluation, we conducted two empirical studies: (i) a system-centric study to
measure the offline quality of recommendations in terms of accuracy (NDCG and
MAP) and beyond accuracy (list diversity, distributional diversity, and item coverage)
(cf. Sect. 4); (ii) a preliminary, user-centric online experiment to measure different
subjective metrics, including relevance, satisfaction, and diversity (cf. Sect. 5). In
both studies, we used a dataset of more than 4000 movie trailers, which makes our
approach more versatile, because trailers are more readily available than full movies.

In the first study, visual and audio features generally outperform the metadata
features with respect to the two tested accuracy measures, with an average growth
factor of 32% along NDCG (min 14% and max 53%) and 23% along MAP (min 7%
and max 42%). The real improvement, however, is in the final system performance,
in which the proposed system outperforms the baseline by a substantial margin of
80% along NDCG and 73% along MAP and also outperforms the simpler multimodal
recommender model using CCA in a pure CBF system by 67% for NDCG and 68% for
MAP. These results are promising and indicate the capability of our recommendation
model to improve the utility of new item recommendation by leveraging rich CF data
for existing warm items and utilizing them as feature weights to improve the content
information in pure CBF.

Moreover, in terms of beyond-accuracy measures, we can see that the genre-based
recommender exhibits the lowest diversity, as could be expected. In addition, our
results show that the multimodal recommender is able to provide substantially higher
coverage and improved distributional diversity on all reported metrics. This means that
a multimodal recommender is less prone to popularity bias; in particular, multimodal
recommendations generated by our CFeCBF model show a significant improvement
along (almost) all reported beyond-accuracy metrics, while not penalizing the accu-
racy and even improving it substantially.

When an item transition from cold to warm we can see that CF is able to outperform
CFeCBF very soon in terms of accuracy metrics on a dataset with significant popularity
bias, while CFeCBF still exhibit much better ability to leverage all the available items.
The strength of the two algorithms may be combined allowing to exploit the superior
recommendation quality of CF for warm items and the much greater coverage of
CFeCBF to recommend cold items, whose low popularity renders the transition to
warm slower.

In the user study, results show that the perceived recommendation for state-of-the-
art visual (Deep) and audio (i-vector) features are meaningful. With the exception of
the user’s perceived personalization, in which i-vector performed poorly, these audio
and visual features are ranked in the top 3 of all investigated features. In some cases,
such as for the perceived novelty, the improvement of these features over metadata
was significantly high. Overall, the results of the user study show that each feature has
advantages and supports our proposal for multimodal recommendation approaches.
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6.2 Answers to research questions

RQI: Can the exploitation of movie genome describing rich item information as a
whole, provide better recommendation quality compared with traditional approaches
that use editorial metadata such as genre and cast in CS scenarios? As the experiments
have shown, multimedia features can provide a good alternative to editorial metadata
such as genre and cast in terms of both accuracy and beyond-accuracy measures. The
use of multimedia features can allow to increase the recommendation quality in terms
of accuracy while also improving the ability of the recommender to leverage the whole
catalogue of items.

RQ?2: Which visual and audio information better captures users’ movie preferences in
CS scenarios? The most important improvement for the accuracy metric was achieved
by exploiting the state-of-the-art deep features for the visual modality but traditional
block-level features for the audio modality.

RQ3: Could we leverage user interaction to enrich cold item information? We proved
thatitis possible to effectively leverage user interactions and enrich the item descriptors
by learning a set of feature weights associated with the descriptors. This would result
in improving the recommendation quality of cold items over current editorial baselines
(genre and cast).

6.3 Limitations

Recommendation model The proposed recommender model has a few limitations.
Firstly, since it leverages item features, the quality and noisiness of item features have
an impact on the ability to learn good feature weights. If an item has too few features,
the resulting recommendations will exhibit limited diversity and the weights might
embed some popularity bias. This is visible in Table 4 for AVF + Genre, which, while
having good recommendation quality, exhibits lower InterL diversity with respect to
the other cases. On the other hand, if the number of features is too high, the number
of collaborative similarities might not be enough to ensure good weighs are learned.

Secondly, as the model leverages a collaborative model, this feature weighting
scheme will not be applicable to any scenario. If the user-item interactions are too few, it
is well known that the collaborative model will perform poorly in comparison to a pure
CBF recommender. If this is the case, the learned weights will be approximating a poor
collaborative model and therefore the resulting recommendations will not improve.
Even so, however, it may still be possible to leverage a collaborative model on a smaller
and denser portion of the dataset to learn only some of the weights. This is an aspect
that can be studied more in detail.

Thirdly, in the case of Boolean features, CFeCBF is sensitive to items with very
sparse features due to the fact that it can learn weights only for features available for
cold items. Feature sparsity has the dual effect of both increasing the probability of
new items having many new features, previously unobserved, and reducing the degree
of freedom of the model.
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Finally, in our previous study (Deldjoo et al. 2016d), we concluded concluded that
trailers and movies share similar characteristics in the recommendation scenario. How-
ever, the dataset used in Deldjoo et al. (2016d) was rather small (167 full movies and
corresponding trailers were used for comparison). Also, the number of visual features
was limited (only five features, cf. Rasheed et al. 2005). Due to these restrictions, the
generalizability of our findings in Deldjoo et al. (2016d) might be restricted. Neverthe-
less, we argue that using trailers instead of full-length movies serves as a good proxy
and has several advantages: trailers are accessible, are sensibly shorter that the entire
movie, and preserve the main idea of the movie since they are designed to trigger
the viewers interest in watching the entire movie. Results in the paper at hand show
that the performance recommendation system that exploits movie genome is better in
comparison with editorial metadata (using genre or cast). We believe this can be seen
as a breakthrough to demonstrate that they can effectively replace the full movies.
Lastly, depending on the strength of the video descriptors with respect to the CF infor-
mation, the items may transition from cold to warm after even a single interaction. In
popularity biased datasets a premature switch from CFeCBF to CF may result in poor
catalogue exploration and therefore limited overall recommender effectiveness. This
effect can be minimized by adopting strategies to allow a gradual switch between the
two allowing the less popular items more time to collect the interactions they need to
become warm, while benefitting from the higher recommendation quality of a CF for
warm items. The choice of an optimal point where to switch between CFeCBF and
CF remains challenging.

User study limitations The reported user study results should be considered prelimi-
nary. In fact, given the relatively low number of participants, the results may not be
statistically significant. Given the complexity of the questionnaire, which takes more
than half an hour to complete, as well as due to the specificity of the movie dataset
used, i.e., the movies tend to be classic ones not easily available to the younger gen-
eration, it is very difficult to find reliable users and motivate them to participate in the
study, even when considering a paying platform such as crowdsourcing.

6.4 Future perspectives

We believe our proposed movie recommendation framework can pave the way for a
new paradigm in new product recommendation by exploiting CFeCBF models built
on top of rich item descriptors extracted from content. Examples of such products
include fashion (images), music (audio), and tourism (both images and audio) and
generic videos. As a related future research line, we would like to understand in what
ways affective metadata (metadata that describe the user’s emotions) can be used for
CBF of videos/movies, similar to the research (Tkal¢i¢ et al. 2010) carried out for
images.

Regarding the carried out user study, currently it involves 101 subjects. This is
while according to Knijnenburg and Willemsen (2015), approximately 73 subjects are
necessary in every configuration to ensure statistical significance of results (i.e., about
600 subjects in total). This is an important limitation of our current work, which we plan
to overcome in the future by hiring a larger number of reliable subjects. Furthermore,
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we plan to validate the generalization power of our new movie recommender model
on video datasets of a different nature, such as full-length movies, movie clips and
user-generated videos. An initial attempt at the former was published in our work
(Deldjoo et al. 2018b) and at the latter in Deldjoo et al. (2018a), whose authors plan

to release a publicly available dataset of movie clips. Part of these data is used in the

MediaEval 2018 task “Recommending Movies Using Content”.?!

Last but not least, a feature analysis will be conducted to better understand how
movie genome features contribute to the success of the combined features as part of
future work.
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