We applied Generative Adversarial Networks (GANs) to learn a model of DOOM levels from human-designed content. Initially, we analyzed the levels and extracted several topological features. Then, for each level, we extracted a set of images identifying the occupied area, the height map, the walls, and the position of game objects. We trained two GANs: one using plain level images, one using both the images and some of the features extracted during the preliminary analysis. We used the two networks to generate new levels and compared the results to assess whether the network trained using also the topological features could generate levels more similar to human-designed ones. Our results show that GANs can capture intrinsic structure of DOOM levels and appears to be a promising approach to level generation in first person shooter games.
DOOM Level Generation using Generative Adversarial Networks
GIACOMELLO, EDOARDO;Lanzi, PL;Loiacono, D
2018-01-01
Abstract
We applied Generative Adversarial Networks (GANs) to learn a model of DOOM levels from human-designed content. Initially, we analyzed the levels and extracted several topological features. Then, for each level, we extracted a set of images identifying the occupied area, the height map, the walls, and the position of game objects. We trained two GANs: one using plain level images, one using both the images and some of the features extracted during the preliminary analysis. We used the two networks to generate new levels and compared the results to assess whether the network trained using also the topological features could generate levels more similar to human-designed ones. Our results show that GANs can capture intrinsic structure of DOOM levels and appears to be a promising approach to level generation in first person shooter games.File | Dimensione | Formato | |
---|---|---|---|
08516539.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.