This paper presents an inertial sensor aided technique for beam alignment and tracking in massive multiple-input multiple-output (MIMO) vehicle-to-vehicle (V2V) communications based on millimeter waves (mmWave). Since directional communications in vehicular scenarios are severely hindered by beam pointing issues, a beam alignment procedure has to be periodically carried out to guarantee the communication reliability. When dealing with massive MIMO links, the beam sweeping approach is known to be time consuming and often unfeasible due to latency constraints. To speed up the process, we propose a method that exploits a-priori information on array dynamics provided by an inertial sensor on transceivers to assist the beam alignment procedure. The proposed inertial sensor aided technique allows a continuous tracking of the beam while transmitting, avoiding frequent realignment phases. Numerical results based on real measurements of on-transceiver accelerometers demonstrate a significant gain in terms of V2V communication throughput with respect to conventional beam alignment protocols.
Inertial Sensor Aided mmWave Beam Tracking to Support Cooperative Autonomous Driving
M. Brambilla;M. NICOLI;S. Savaresi;U. Spagnolini
2019-01-01
Abstract
This paper presents an inertial sensor aided technique for beam alignment and tracking in massive multiple-input multiple-output (MIMO) vehicle-to-vehicle (V2V) communications based on millimeter waves (mmWave). Since directional communications in vehicular scenarios are severely hindered by beam pointing issues, a beam alignment procedure has to be periodically carried out to guarantee the communication reliability. When dealing with massive MIMO links, the beam sweeping approach is known to be time consuming and often unfeasible due to latency constraints. To speed up the process, we propose a method that exploits a-priori information on array dynamics provided by an inertial sensor on transceivers to assist the beam alignment procedure. The proposed inertial sensor aided technique allows a continuous tracking of the beam while transmitting, avoiding frequent realignment phases. Numerical results based on real measurements of on-transceiver accelerometers demonstrate a significant gain in terms of V2V communication throughput with respect to conventional beam alignment protocols.File | Dimensione | Formato | |
---|---|---|---|
CV_2019_ICC_1_postprint.pdf
accesso aperto
Descrizione: Full paper postprint
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
CV_2019_ICC_1.pdf
Accesso riservato
Descrizione: Full paper
:
Publisher’s version
Dimensione
778.9 kB
Formato
Adobe PDF
|
778.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.