In the framework of H2020, the European Commission recently funded the project ReSHEALience (www.uhdc.eu). The main idea behind the project is that the long-term behaviour of structures under extremely aggressive exposure conditions can highly benefit from the use of high performance materials, in the framework of durability-based design approaches. The project consortium, coordinated by Politecnico di Milano, features 14 partners from 8 different countries, including 6 academic/research institutions and 8 industrial partners, covering the whole value chain from producers of concrete constituents to construction companies to stake-holders and end-users. The main goals of the project are the development (a) of an Ultra High Durability Concrete (UHDC) and (b) a Durability Assessment-based Design (DAD) methodology to improve structure durability and predict long-term performance under Extremely Aggressive Exposures (EAE). The project will tailor the composition of UHDC, by upgrading the UHPC/UHPFRC concept through the incorporation of tailored nanoscale constituents.
An Overview on H2020 Project “ReSHEALience”
L. Ferrara;P. Bamonte;
2019-01-01
Abstract
In the framework of H2020, the European Commission recently funded the project ReSHEALience (www.uhdc.eu). The main idea behind the project is that the long-term behaviour of structures under extremely aggressive exposure conditions can highly benefit from the use of high performance materials, in the framework of durability-based design approaches. The project consortium, coordinated by Politecnico di Milano, features 14 partners from 8 different countries, including 6 academic/research institutions and 8 industrial partners, covering the whole value chain from producers of concrete constituents to construction companies to stake-holders and end-users. The main goals of the project are the development (a) of an Ultra High Durability Concrete (UHDC) and (b) a Durability Assessment-based Design (DAD) methodology to improve structure durability and predict long-term performance under Extremely Aggressive Exposures (EAE). The project will tailor the composition of UHDC, by upgrading the UHPC/UHPFRC concept through the incorporation of tailored nanoscale constituents.File | Dimensione | Formato | |
---|---|---|---|
Ferrara_IABSE2019.pdf
Accesso riservato
Descrizione: Articolo completo
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
938.27 kB
Formato
Adobe PDF
|
938.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.