By predicting the traffic load on network links, a network operator can effectively pre-dispose resource-allocation strategies to early address, e.g., an incoming congestion event. Traffic loads on different links of a telecom is know to be subject to strong correlation, and this correlation, if properly represented, can be exploited to refine the prediction of future congestion events. Machine Learning (ML) represents nowadays the state-of-the-art methodology for discovering complex relations among data. However, ML has been traditionally applied to data represented in the Euclidean space (e.g., to images) and it may not be straightforward to effectively employ it to model graph-stuctured data (e.g., as the events that take place in telecom networks). Recently, several ML algorithms specifically designed to learn models of graph-structured data have appeared in the literature. The main novelty of these techniques relies on their ability to learn a representation of each node of the graph considering both its properties (e.g., features) and the structure of the network (e.g., the topology). In this paper, we employ a recently-proposed graph-based ML algorithm, the Diffusion Convolutional Recurrent Neural Network (DCRNN), to forecast traffic load on the links of a real backbone network. We evaluate DRCNN’s ability to forecast the volume of expected traffic and to predict events of congestion, and we compare this approach to other existing approaches (as LSTM, and Fully-Connected Neural Networks). Results show that DCRN outperforms the other methods both in terms of its forecasting ability (e.g., MAPE is reduced from 210% to 43%) and in terms of the prediction of congestion events, and represent promising starting point for the application of DRCNN to other network management problems.

Network Traffic Prediction based on Diffusion Convolutional Recurrent Neural Networks

ANDREOLETTI, DAVIDE;TROIA, SEBASTIAN;Francesco Musumeci;Guido Maier;Massimo Tornatore
2019-01-01

Abstract

By predicting the traffic load on network links, a network operator can effectively pre-dispose resource-allocation strategies to early address, e.g., an incoming congestion event. Traffic loads on different links of a telecom is know to be subject to strong correlation, and this correlation, if properly represented, can be exploited to refine the prediction of future congestion events. Machine Learning (ML) represents nowadays the state-of-the-art methodology for discovering complex relations among data. However, ML has been traditionally applied to data represented in the Euclidean space (e.g., to images) and it may not be straightforward to effectively employ it to model graph-stuctured data (e.g., as the events that take place in telecom networks). Recently, several ML algorithms specifically designed to learn models of graph-structured data have appeared in the literature. The main novelty of these techniques relies on their ability to learn a representation of each node of the graph considering both its properties (e.g., features) and the structure of the network (e.g., the topology). In this paper, we employ a recently-proposed graph-based ML algorithm, the Diffusion Convolutional Recurrent Neural Network (DCRNN), to forecast traffic load on the links of a real backbone network. We evaluate DRCNN’s ability to forecast the volume of expected traffic and to predict events of congestion, and we compare this approach to other existing approaches (as LSTM, and Fully-Connected Neural Networks). Results show that DCRN outperforms the other methods both in terms of its forecasting ability (e.g., MAPE is reduced from 210% to 43%) and in terms of the prediction of congestion events, and represent promising starting point for the application of DRCNN to other network management problems.
2019
Proceedings of INFOCOM 2019
978-172811878-9
traffic forecasting, graph-based machine learning, network congestion
File in questo prodotto:
File Dimensione Formato  
PID5815733-pdfexpress.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 259.69 kB
Formato Adobe PDF
259.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1079801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 50
social impact