In recent years, the numerical treatment of boundary value problems with the help of polygonal and polyhedral discretization techniques has received a lot of attention within several disciplines. Due to the general element shapes an enormous flexibility is gained and can be exploited, for instance, in adaptive mesh refinement strategies. The Virtual Element Method (VEM) is one of the new promising approaches applicable on general meshes. Although polygonal element shapes may be highly adapted, the analysis relies on isotropic elements which must not be very stretched. But, such anisotropic element shapes have a high potential in the discretization of interior and boundary layers. Recent results on anisotropic polygonal meshes are reviewed and the Virtual Element Method is applied on layer adapted meshes containing isotropic and anisotropic polygonal elements.

The virtual element method on anisotropic polygonal discretizations

Antonietti, Paola F.;Berrone, Stefano;Verani, Marco;WEISSER, STEFFEN
2019-01-01

Abstract

In recent years, the numerical treatment of boundary value problems with the help of polygonal and polyhedral discretization techniques has received a lot of attention within several disciplines. Due to the general element shapes an enormous flexibility is gained and can be exploited, for instance, in adaptive mesh refinement strategies. The Virtual Element Method (VEM) is one of the new promising approaches applicable on general meshes. Although polygonal element shapes may be highly adapted, the analysis relies on isotropic elements which must not be very stretched. But, such anisotropic element shapes have a high potential in the discretization of interior and boundary layers. Recent results on anisotropic polygonal meshes are reviewed and the Virtual Element Method is applied on layer adapted meshes containing isotropic and anisotropic polygonal elements.
2019
Lecture Notes in Computational Science and Engineering
9783319964140
Modeling and Simulation; Engineering (all); Discrete Mathematics and Combinatorics; Control and Optimization; Computational Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1077214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact