In modern system-on-chip architectures, specialized accelerators are increasingly used to improve performance and energy efficiency. The growing complexity of these systems requires the use of system-level design methodologies featuring high-level synthesis (HLS) for generating these components efficiently. Existing HLS tools, however, have limited support for the system-level optimization of memory elements, which typically occupy most of the accelerator area. We present a complete methodology for designing the private local memories (PLMs) of multiple accelerators. Based on the memory requirements of each accelerator, our methodology automatically determines an area-efficient architecture for the PLMs to guarantee performance and reduce the memory cost based on technology-related information. We implemented a prototype tool, called Mnemosyne, that embodies our methodology within a commercial HLS flow. We designed 13 complex accelerators for selected applications from two recently-released benchmark suites (Perfect and CortexSuite). With our approach we are able to reduce the memory cost of single accelerators by up to 45%. Moreover, when reusing memory IPs across accelerators, we achieve area savings that range between 17% and 55% compared to the case where the PLMs are designed separately.
System-Level Optimization of Accelerator Local Memory for Heterogeneous Systems-on-Chip
Pilato, Christian;
2017-01-01
Abstract
In modern system-on-chip architectures, specialized accelerators are increasingly used to improve performance and energy efficiency. The growing complexity of these systems requires the use of system-level design methodologies featuring high-level synthesis (HLS) for generating these components efficiently. Existing HLS tools, however, have limited support for the system-level optimization of memory elements, which typically occupy most of the accelerator area. We present a complete methodology for designing the private local memories (PLMs) of multiple accelerators. Based on the memory requirements of each accelerator, our methodology automatically determines an area-efficient architecture for the PLMs to guarantee performance and reduce the memory cost based on technology-related information. We implemented a prototype tool, called Mnemosyne, that embodies our methodology within a commercial HLS flow. We designed 13 complex accelerators for selected applications from two recently-released benchmark suites (Perfect and CortexSuite). With our approach we are able to reduce the memory cost of single accelerators by up to 45%. Moreover, when reusing memory IPs across accelerators, we achieve area savings that range between 17% and 55% compared to the case where the PLMs are designed separately.File | Dimensione | Formato | |
---|---|---|---|
pilato_TCAD17.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri |
11311-1069650_Pilato.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.