Sustainability of cement-based construction components is becoming a key point of the structural design process, since the implementation of green strategies favors an overall reduction of economic and environmental impacts. In the framework of a regionally funded research project, an innovative multi-layered roof element for the retrofitting of existing industrial buildings was developed at Politecnico di Milano. The development followed a holistic approach focusing on two main levels: 1) the optimization of the transverse section, aimed at minimizing the employment of cementitious composites such as High Performances Fiber Reinforced Concrete (HPFRC) and Textile Reinforced Concrete (TRC) and 2) the improvement of the energy performances, through the selection of adequate insulating materials (polystyrene and glass foam were considered) and the design of Building-Integrated PhotoVoltaics (BIPV). In this paper, preliminary considerations pertaining to the sectional and structural behavior of a 2.5 × 5 m [8.2 × 16.4 ft.] secondary panel are followed by the numerical/experimental evaluation of the thermal transmittance U and the BIPV performances. In this regard, a small demo roofing system housing three full scale panels was monitored throughout two Summer weeks, leading to the assessment of photovoltaics Performance Ratios (PR) and effectiveness of the architectural integration.

Sustainability-oriented innovation of a multilayered cement-based roof element

A. Angelotti;S. Leva;G. Zani;M. di Prisco
2018-01-01

Abstract

Sustainability of cement-based construction components is becoming a key point of the structural design process, since the implementation of green strategies favors an overall reduction of economic and environmental impacts. In the framework of a regionally funded research project, an innovative multi-layered roof element for the retrofitting of existing industrial buildings was developed at Politecnico di Milano. The development followed a holistic approach focusing on two main levels: 1) the optimization of the transverse section, aimed at minimizing the employment of cementitious composites such as High Performances Fiber Reinforced Concrete (HPFRC) and Textile Reinforced Concrete (TRC) and 2) the improvement of the energy performances, through the selection of adequate insulating materials (polystyrene and glass foam were considered) and the design of Building-Integrated PhotoVoltaics (BIPV). In this paper, preliminary considerations pertaining to the sectional and structural behavior of a 2.5 × 5 m [8.2 × 16.4 ft.] secondary panel are followed by the numerical/experimental evaluation of the thermal transmittance U and the BIPV performances. In this regard, a small demo roofing system housing three full scale panels was monitored throughout two Summer weeks, leading to the assessment of photovoltaics Performance Ratios (PR) and effectiveness of the architectural integration.
2018
Durability and Sustainability of Concrete Structures (DSCS-2018)
9781641950220
building-integrated photovoltaics, energy performances, high-performances fiber-reinforced concrete, roof element, sandwich panel, textile-reinforced concrete, thermal transmittance
File in questo prodotto:
File Dimensione Formato  
Angelotti et al..pdf

accesso aperto

Descrizione: Articolo principale
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1065970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact