Several neurosurgical procedures, such as ArteroVenous Malformations (AVMs) and StereoElectroEncephaloGraphy (SEEG) require accurate reconstruction of the cerebral vascular tree, as well as the classification of arteries and veins, to increase the safety of the intervention. We propose ART-3.5D, a novel approach to recover the dynamic information from standard Cone Beam Computed Tomography Angiography scans based on the post- processing of both the segmented angiogram and the raw data-set.

Numerical algorithm to recover contrast dynamics in 3D digital subtraction angiography data-sets: a preliminary clinical validation

EL HADJI, SARA;BONILAURI, AUGUSTO;E. De Momi;G. Baselli;
2018-01-01

Abstract

Several neurosurgical procedures, such as ArteroVenous Malformations (AVMs) and StereoElectroEncephaloGraphy (SEEG) require accurate reconstruction of the cerebral vascular tree, as well as the classification of arteries and veins, to increase the safety of the intervention. We propose ART-3.5D, a novel approach to recover the dynamic information from standard Cone Beam Computed Tomography Angiography scans based on the post- processing of both the segmented angiogram and the raw data-set.
2018
Congresso nazionale di Bioingegneria 2018
Digital subtraction angiography, surgical planning, algebraic reconstruction technique
File in questo prodotto:
File Dimensione Formato  
Numerical algorithm to recover contrast dynamics in 3D digital subtraction angiography data-sets- a preliminary clinical validation.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1063844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact