The Discrete Event Optimization (DEO) framework was recently proposed to formulate the simulation-optimization model of the Joint Workstation, Workload and Buffer Allocation Problem (JWWBAP) of the open flow line. However, the computational effort to solve the DEO model at optimality is quite high, because it is a mixed integer linear programming model. This work proposes a simulation cutting approach to efficiently solve the DEO model of the JWWBAP. Specifically, the DEO model is decomposed into an optimization model and a simulation model, which are the master problem and the subproblem in Benders decomposition, respectively. The optimization model is solved to find a system configuration, and the simulation model is solved to add cuts to the optimization model. An algorithm is proposed to generate cut using the simulation trajectory. Numerical analysis shows that the exact DEO model can be solved efficiently.

A simulation-based benders' cuts generation for the joint workstation, workload and buffer allocation problem

ZHANG, MENGYI;Matta, Andrea;Alfieri, Arianna;Pedrielli, Giulia
2018-01-01

Abstract

The Discrete Event Optimization (DEO) framework was recently proposed to formulate the simulation-optimization model of the Joint Workstation, Workload and Buffer Allocation Problem (JWWBAP) of the open flow line. However, the computational effort to solve the DEO model at optimality is quite high, because it is a mixed integer linear programming model. This work proposes a simulation cutting approach to efficiently solve the DEO model of the JWWBAP. Specifically, the DEO model is decomposed into an optimization model and a simulation model, which are the master problem and the subproblem in Benders decomposition, respectively. The optimization model is solved to find a system configuration, and the simulation model is solved to add cuts to the optimization model. An algorithm is proposed to generate cut using the simulation trajectory. Numerical analysis shows that the exact DEO model can be solved efficiently.
2018
13th IEEE Conference on Automation Science and Engineering (CASE)
9781509067800
buffer allocation problem; decomposition; manufacturing system; mathematical programming; Control and Systems Engineering; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
A simulation-based benders' cuts generation for the joint workstation, workload and buffer allocation problem.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1063682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact