We introduce a novel configuration for the broadband measurement of the optical activity of molecules, combining time-domain detection with heterodyne amplification. A birefringent common-path polarization-division interferometer creates two phase-locked replicas of the input light with orthogonal polarization. The more intense replica interacts with the sample, producing a chiral free-induction decay field, which interferes with the other replica, acting as a time-delayed phase-coherent local oscillator. By recording the delay-dependent interferogram, we obtain by a Fourier transform both the circular dichroism and circular birefringence spectra. Our compact, low-cost setup accepts ultrashort light pulses, making it suitable for measurement of transient optical activity.
Time-domain measurement of optical activity by an ultrastable common-path interferometer
Preda, Fabrizio;Perri, Antonio;Réhault, Julien;Cerullo, Giulio;Polli, Dario
2018-01-01
Abstract
We introduce a novel configuration for the broadband measurement of the optical activity of molecules, combining time-domain detection with heterodyne amplification. A birefringent common-path polarization-division interferometer creates two phase-locked replicas of the input light with orthogonal polarization. The more intense replica interacts with the sample, producing a chiral free-induction decay field, which interferes with the other replica, acting as a time-delayed phase-coherent local oscillator. By recording the delay-dependent interferogram, we obtain by a Fourier transform both the circular dichroism and circular birefringence spectra. Our compact, low-cost setup accepts ultrashort light pulses, making it suitable for measurement of transient optical activity.File | Dimensione | Formato | |
---|---|---|---|
91 - Preda OL2018 (CD and CB with FT).pdf
accesso aperto
Descrizione: Articolo
:
Publisher’s version
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.