The need to reduce emissions and improve mobility in overcrowded cities is promoting the use of bicycles as transportation means. Bicycles have a small footprint, are easy to use, and cost effective. The introduction of modern electric bicycles has also widened the user base, extending the reach of bicycles as a commuter's option. Electric bicycles, in order to meet regulation standards, need sensors that are not usually available on muscular bicycles, like torque or cadence sensors. In this paper, we develop a cadence estimation strategy based on the wheel speed encoder only, thus allowing to remove the cadence sensor. Specifically, we propose 2 approaches, ie, a direct cadence estimate and an indirect one via gear ratio estimate. Both estimation problems are shown to be equivalent to a frequency tracking problem, which can be solved by Kalman filtering. The final algorithm embeds a logic supervisor that guarantees the reliability of the procedure in all working conditions, including freewheeling. The whole analysis and development are based upon a thorough experimental campaign using an instrumented bicycle.

Real-time cycling cadence estimation via wheel speed measurement

Rallo, Gianmarco;Formentin, Simone;Corno, Matteo;Savaresi, Sergio M
2018-01-01

Abstract

The need to reduce emissions and improve mobility in overcrowded cities is promoting the use of bicycles as transportation means. Bicycles have a small footprint, are easy to use, and cost effective. The introduction of modern electric bicycles has also widened the user base, extending the reach of bicycles as a commuter's option. Electric bicycles, in order to meet regulation standards, need sensors that are not usually available on muscular bicycles, like torque or cadence sensors. In this paper, we develop a cadence estimation strategy based on the wheel speed encoder only, thus allowing to remove the cadence sensor. Specifically, we propose 2 approaches, ie, a direct cadence estimate and an indirect one via gear ratio estimate. Both estimation problems are shown to be equivalent to a frequency tracking problem, which can be solved by Kalman filtering. The final algorithm embeds a logic supervisor that guarantees the reliability of the procedure in all working conditions, including freewheeling. The whole analysis and development are based upon a thorough experimental campaign using an instrumented bicycle.
2018
adaptive filtering; bicycles; estimation; Kalman filtering; wheel speed processing; Control and Systems Engineering; Signal Processing; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
acs.2885.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1063324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact