The Southern Connecticut Stellar Interferometer (SCSI) is a two-telescope astronomical intensity interferometer that was completed in June 2016 and has been taking photon correlation data since that time. It uses single-photon avalanche diode (SPAD) detectors at the telescope focal plane and a central timing module, which records the signals from both telescopes simultaneously. In the observations taken to date, single-pixel SPADs have been connected to signal cables that stretch from each telescope to the timing module. However, we are now in the process of making the instrument “wireless” by using a separate timing module at each telescope and synchronizing the signals recorded using GPS timing cards. We have also upgraded one of the two stations with an 8-pixel SPAD device, which allows us to achieve higher count rates in a variety of observing conditions. In this paper, we report on the current state of the instrument, including engineering tests made in preparation for wireless operation, and we discuss the expected capabilities in that mode.
Prospects for wireless optical intensity interferometry with the Southern Connecticut stellar interferometer
Pietro Peronio;Ivan Rech;Angelo Gulinatti
2018-01-01
Abstract
The Southern Connecticut Stellar Interferometer (SCSI) is a two-telescope astronomical intensity interferometer that was completed in June 2016 and has been taking photon correlation data since that time. It uses single-photon avalanche diode (SPAD) detectors at the telescope focal plane and a central timing module, which records the signals from both telescopes simultaneously. In the observations taken to date, single-pixel SPADs have been connected to signal cables that stretch from each telescope to the timing module. However, we are now in the process of making the instrument “wireless” by using a separate timing module at each telescope and synchronizing the signals recorded using GPS timing cards. We have also upgraded one of the two stations with an 8-pixel SPAD device, which allows us to achieve higher count rates in a variety of observing conditions. In this paper, we report on the current state of the instrument, including engineering tests made in preparation for wireless operation, and we discuss the expected capabilities in that mode.File | Dimensione | Formato | |
---|---|---|---|
2018_Horch_SpieAstronomicalTelescopes_ProspectsForWirelssOpticalIntensityInterferometry.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
642.04 kB
Formato
Adobe PDF
|
642.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.