The Southern Connecticut Stellar Interferometer (SCSI) is a two-telescope astronomical intensity interferometer that was completed in June 2016 and has been taking photon correlation data since that time. It uses single-photon avalanche diode (SPAD) detectors at the telescope focal plane and a central timing module, which records the signals from both telescopes simultaneously. In the observations taken to date, single-pixel SPADs have been connected to signal cables that stretch from each telescope to the timing module. However, we are now in the process of making the instrument “wireless” by using a separate timing module at each telescope and synchronizing the signals recorded using GPS timing cards. We have also upgraded one of the two stations with an 8-pixel SPAD device, which allows us to achieve higher count rates in a variety of observing conditions. In this paper, we report on the current state of the instrument, including engineering tests made in preparation for wireless operation, and we discuss the expected capabilities in that mode.

Prospects for wireless optical intensity interferometry with the Southern Connecticut stellar interferometer

Pietro Peronio;Ivan Rech;Angelo Gulinatti
2018-01-01

Abstract

The Southern Connecticut Stellar Interferometer (SCSI) is a two-telescope astronomical intensity interferometer that was completed in June 2016 and has been taking photon correlation data since that time. It uses single-photon avalanche diode (SPAD) detectors at the telescope focal plane and a central timing module, which records the signals from both telescopes simultaneously. In the observations taken to date, single-pixel SPADs have been connected to signal cables that stretch from each telescope to the timing module. However, we are now in the process of making the instrument “wireless” by using a separate timing module at each telescope and synchronizing the signals recorded using GPS timing cards. We have also upgraded one of the two stations with an 8-pixel SPAD device, which allows us to achieve higher count rates in a variety of observing conditions. In this paper, we report on the current state of the instrument, including engineering tests made in preparation for wireless operation, and we discuss the expected capabilities in that mode.
2018
Optical and Infrared Interferometry and Imaging VI
9781510619555
sezele
File in questo prodotto:
File Dimensione Formato  
2018_Horch_SpieAstronomicalTelescopes_ProspectsForWirelssOpticalIntensityInterferometry.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 642.04 kB
Formato Adobe PDF
642.04 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1061856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact