We address the problem of finite-sample null hypothesis significance testing on the mean element of a random variable that takes value in a generic separable Hilbert space. For this purpose, we propose a (re)definition of Hotelling's T-2 that naturally expands to any separable Hilbert space that we further embed within a permutation inferential approach. In detail, we present a unified framework for making inference on the mean element of Hilbert populations based on Hotelling's T-2 statistic, using a permutation-based testing procedure of which we prove finite-sample exactness and consistency; we showcase the explicit form of Hotelling's T-2 statistic in the case of some famous spaces used in functional data analysis (i.e., Sobolev and Bayes spaces); we demonstrate, by means of simulations, that Hotelling's T-2 exhibits the best performances in terms of statistical power for detecting mean differences between Gaussian populations, compared to other state-of-the-art statistics, in most simulated scenarios; we propose a case study that demonstrate the importance of the space into which one decides to embed the data; we provide an implementation of the proposed tools in the R package fdahotelling available at https://github.com/astamm/fdahotelling. (C) 2018 Elsevier Inc. All rights reserved.
Hotelling’s T2 in separable Hilbert spaces
Pini, Alessia;STAMM, AYMERIC;Vantini, Simone
2018-01-01
Abstract
We address the problem of finite-sample null hypothesis significance testing on the mean element of a random variable that takes value in a generic separable Hilbert space. For this purpose, we propose a (re)definition of Hotelling's T-2 that naturally expands to any separable Hilbert space that we further embed within a permutation inferential approach. In detail, we present a unified framework for making inference on the mean element of Hilbert populations based on Hotelling's T-2 statistic, using a permutation-based testing procedure of which we prove finite-sample exactness and consistency; we showcase the explicit form of Hotelling's T-2 statistic in the case of some famous spaces used in functional data analysis (i.e., Sobolev and Bayes spaces); we demonstrate, by means of simulations, that Hotelling's T-2 exhibits the best performances in terms of statistical power for detecting mean differences between Gaussian populations, compared to other state-of-the-art statistics, in most simulated scenarios; we propose a case study that demonstrate the importance of the space into which one decides to embed the data; we provide an implementation of the proposed tools in the R package fdahotelling available at https://github.com/astamm/fdahotelling. (C) 2018 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Pini Stamm Vantini 2018.pdf
Accesso riservato
:
Publisher’s version
Dimensione
877.67 kB
Formato
Adobe PDF
|
877.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.