The research in the field of robust scheduling aims at devising schedules which are not sensitiveto a certain extentto the disruptive effects of unexpected events. Nevertheless, the protection of the schedule from rare events causing heavy losses is still a challenging aim. The paper presents a novel approach for protecting the quality of a schedule by assessing the risk associated to the different scheduling decisions. The approach is applied to a stochastic scheduling problem with a set of jobs to be sequenced on a single machine. The release dates and processing times of the jobs are generally distributed independent random variables, while the due dates are deterministic. A branch-and-bound approach is taken to minimise the value-at-risk of the distribution of the maximum lateness. The viability of the approach is demonstrated through a computational experiment and the application to an industrial problem in the tool making industry.
A branch-and-bound approach for the single machine maximum lateness stochastic scheduling problem to minimize the value-at-risk
Urgo, M.;
2019-01-01
Abstract
The research in the field of robust scheduling aims at devising schedules which are not sensitiveto a certain extentto the disruptive effects of unexpected events. Nevertheless, the protection of the schedule from rare events causing heavy losses is still a challenging aim. The paper presents a novel approach for protecting the quality of a schedule by assessing the risk associated to the different scheduling decisions. The approach is applied to a stochastic scheduling problem with a set of jobs to be sequenced on a single machine. The release dates and processing times of the jobs are generally distributed independent random variables, while the due dates are deterministic. A branch-and-bound approach is taken to minimise the value-at-risk of the distribution of the maximum lateness. The viability of the approach is demonstrated through a computational experiment and the application to an industrial problem in the tool making industry.File | Dimensione | Formato | |
---|---|---|---|
A branch-and-bound approach for the single machine maximum lateness stochastic scheduling problem to minimize the value-at-risk.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri |
MU003v11.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.