We present a numerical scheme to calculate fluctuation identities for exponential Lévy processes in the continuous monitoring case. This includes the Spitzer identities for touching a single upper or lower barrier, and the more difficult case of the two-barriers exit problem. These identities are given in the Fourier-Laplace domain and require numerical inverse transforms. Thus we cover a gap in the literature that has mainly studied the discrete monitoring case; indeed, there are no existing numerical methods that deal with the continuous case. As a motivating application we price continuously monitored barrier options with the underlying asset modelled by an exponential Lévy process. We perform a detailed error analysis of the method and develop error bounds to show how the performance is limited by the truncation error of the sinc-based fast Hilbert transform used for the Wiener–Hopf factorisation. By comparing the results for our new technique with those for the discretely monitored case (which is in the Fourier-z domain) as the monitoring time step approaches zero, we show that the error convergence with continuous monitoring represents a limit for the discretely monitored scheme.
Fluctuation identities with continuous monitoring and their application to the pricing of barrier options
Marazzina, Daniele;
2018-01-01
Abstract
We present a numerical scheme to calculate fluctuation identities for exponential Lévy processes in the continuous monitoring case. This includes the Spitzer identities for touching a single upper or lower barrier, and the more difficult case of the two-barriers exit problem. These identities are given in the Fourier-Laplace domain and require numerical inverse transforms. Thus we cover a gap in the literature that has mainly studied the discrete monitoring case; indeed, there are no existing numerical methods that deal with the continuous case. As a motivating application we price continuously monitored barrier options with the underlying asset modelled by an exponential Lévy process. We perform a detailed error analysis of the method and develop error bounds to show how the performance is limited by the truncation error of the sinc-based fast Hilbert transform used for the Wiener–Hopf factorisation. By comparing the results for our new technique with those for the discretely monitored case (which is in the Fourier-z domain) as the monitoring time step approaches zero, we show that the error convergence with continuous monitoring represents a limit for the discretely monitored scheme.File | Dimensione | Formato | |
---|---|---|---|
EJOR_271(2018)_210-223.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.