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We present a numerical scheme to calculate fluctuation identities for exponential Lévy processes in the 

continuous monitoring case. This includes the Spitzer identities for touching a single upper or lower 

barrier, and the more difficult case of the two-barriers exit problem. These identities are given in the 

Fourier-Laplace domain and require numerical inverse transforms. Thus we cover a gap in the literature 

that has mainly studied the discrete monitoring case; indeed, there are no existing numerical methods 

that deal with the continuous case. As a motivating application we price continuously monitored barrier 

options with the underlying asset modelled by an exponential Lévy process. We perform a detailed er- 

ror analysis of the method and develop error bounds to show how the performance is limited by the 

truncation error of the sinc-based fast Hilbert transform used for the Wiener–Hopf factorisation. By com- 

paring the results for our new technique with those for the discretely monitored case (which is in the 

Fourier- z domain) as the monitoring time step approaches zero, we show that the error convergence with 

continuous monitoring represents a limit for the discretely monitored scheme. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Identities providing the Fourier- z transform of probability

distribution functions of the extrema of a random path subject

to monitoring at discrete intervals were first published by Spitzer

(1956) . They were extended to the continuous case by Baxter and

Donsker (1957) and to double barriers by Kemperman (1963) .

The identities for the minimum and maximum of a path, for use

with a single upper or lower barrier and for the two-barrier exit

problem, are comprehensively described in the discrete monitoring

case by Fusai, Germano, and Marazzina (2016) , who proposed nu-

merical methods to compute them for exponential Lévy processes.

The discretely and continuously monitored identities are in the

Fourier- z and Fourier-Laplace domains respectively. This means

that, with the application of the inverse z or Laplace transform
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s appropriate, they can be used within Fourier transform option

ricing methods, which we will use as an example in this paper.

he relevance of the Spitzer identity in several fields within

perational research is nowadays well recognised. We mention,

or example, the application to queuing systems, see the classical

ontributions by Cohen (1975, 1982) and Prabhu (1974) and more

ecent work by Bayer and Boxma (1996) , Markov chains ( Rogers,

994 ), insurance ( Chi & Lin, 2011 ), inventory systems ( Cohen &

ekelman, 1978; Grassmann & Jain, 1989 ), and applied probability

 Grassman, 1990 ), as well as in mathematical finance. 

Pricing derivatives, especially exotic options, is a challenging

roblem often covered also in the operations research literature;

ee e.g. Kou (2008) . Fusai et al. (2016) provide extensive ref-

rences for this, as well as for many non-financial applications

f the Hilbert transform and the related topics of Wiener–Hopf

actorisation and Spitzer identities in insurance, queuing theory,

hysics, engineering, applied mathematics, etc. Derivative pricing

ith Fourier transforms was first investigated by Heston (1993) .

arr and Madan (1999) published the first method with both the

haracteristic function and the payoff in the Fourier domain. Fang

nd Oosterlee (20 08, 20 09) devised the COS method based on the
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Characteristic exponent of some Lévy processes. 

Process Characteristic exponent ψ( ξ ) Rational 

Normal iξμ − 1 

2 
σ 2 ξ 2 � 

Kou iξμ − 1 

2 
σ 2 ξ 2 + λ

(
(1 − ρ) η2 

η2 + iξ
+ 

ρη1 

η1 − iξ

)
� 

Merton iξμ − 1 

2 
σ 2 ξ 2 + λ

(
e iαξ− 1 

2 δ
2 ξ 2 − 1 

)
✗ 

NIG δ
(√ 

α2 − (β + iξ ) 2 −
√ 

α2 − β2 

)
✗ 

VG − 1 

ν
log 

(
1 − iξθν + 

1 

2 
νσ 2 ξ 2 

)
✗ 
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ourier-cosine expansion. Innocentis and Levendorski ̆ı (2014) cou-

led piecewise polynomial interpolation with an efficient version

f the Fourier transform technique. Kirkby (2017) exploited the

rame-projected transition densities, which transform the problem

nto the Fourier domain and accelerate the convergence of inter-

ediate expectations. The Hilbert transform ( King, 2009 ) has also

een successfully employed: by Feng and Linetsky (2008) to price

arrier options using backward induction in Fourier space, and by

arazzina, Fusai, and Germano (2012) and Fusai et al. (2016) to

ompute via the Plemelj–Sokhotsky relations the factorisations

equired by the Wiener–Hopf method and the Spitzer identities.

or a comparison of the two approaches in the discrete monitoring

ase, see Phelan, Marazzina, Fusai, and Germano (2018) . Feng and

inetsky showed that computing the Hilbert transform with the

inc expansion, as studied by Stenger (1993, 2011) , gives errors

hat reduce exponentially as the number of fast Fourier trans-

orm (FFT) grid points increases. However, the Feng and Linetsky

ethod cannot be extended to continuously monitored options

ecause its recursive structure makes it an inherently discrete

cheme. In contrast ( Green, Fusai, & Abrahams, 2010 ) showed

hat methods based on the Spitzer identities can be extended to

ontinuous monitoring using the Laplace transform in the time

omain rather than the z -transform. Unfortunately, they limited

heir analysis to the Gaussian case. 

In this article we implement a method to numerically calculate

he required Wiener–Hopf factors and thence the Spitzer identities

n continuous time; we apply this to price continuously monitored

ptions with general exponential Lévy processes. For continuous

onitoring, the Wiener–Hopf factorisation can be done analytically

f the characteristic exponent is rational (see Eq. (7) and Table 1 ),

.e. for the Gaussian and Kou double exponential processes, or in

ome special cases, e.g. when the jumps are only positive or nega-

ive. It is also possible to approximate an irrational exponent with

 rational one that is easily factored ( Kuznetsov, 2010 ). However, an

nalytical solution for the continuous monitoring case which is us-

ble for any exponential Lévy process and does not require approx-

mation has not been found yet. Therefore, the importance of our

ontribution is that it provides a formula to compute the Wiener–

opf factors with a single barrier or two barriers in the continu-

us monitoring case. Moreover, we also propose a fast and accurate

umerical method to make the computation of the Wiener–Hopf

actors operational for any Lévy process, even when the exponent

s not rational, like the variance gamma process. In the discrete

ase an analytical Wiener–Hopf factorisation can be done only for

 Gaussian process ( Fusai, Abrahams, & Sgarra, 2006 ), but from

 numerical point of view the problem is easier and there are a

umber of papers dealing with exponential Lévy processes. How-

ver, it is well known that the convergence of numerical meth-

ds for discrete monitoring to the continuous monitoring limit is

ery slow; (see e.g. Broadie, Glasserman, & Kou, 1997 ). Therefore

his work contributes to the literature by providing a procedure to

etermine the finite-time distribution of the extrema and of the
itting times in the presence of one or two barriers for a process

ith independent and identically distributed increments, such as

 Lévy process, whereas previous numerical methods, like the one

y Fusai et al. (2016) , dealt only with discrete monitoring. Even

f this article is mainly motivated by applications in option pric-

ng, its relevance is very much beyond it. First-passage problems

ith models based on Markov processes are also ubiquitous in

hysical, biological, social, actuarial and other sciences. For exam-

le, our technique could be used to compute the ruin probability,

.e. the probability that a Lévy process takes value in a set A at a

ime T > 0 given that the process never falls below a barrier B in

he interval [0, T ], i.e. P ( X ( T ) ∈ A , min t ∈ [0, T ] X ( t ) > B ). This a classical

roblem in actuarial science and applied probability; see for exam-

le Klüppelberg, Kyprianou, and Maller, 2004 . For applications in

hysics and biophysics, see e.g. the review by Bray, Majumdar, and

chehr (2013) . Similar problems also arise in statistics, see for ex-

mple the classical paper by Chernoff (1961) , or in studying when

 process reaches for the first time an adverse threshold state (a

atient dies, or an industrial device breaks down). 

This method follows the approach suggested by Green et al.

2010) and is based on the Fusai, Germano and Marazzina (FGM)

ethod ( Fusai et al., 2016 ) with spectral filtering ( Phelan et al.,

018 ). While the latter method is for discrete monitoring and thus

n the Fourier- z domain, here we operate in the Fourier-Laplace

omain. Besides the discrete Fourier transform (DFT), or actually

he fast Fourier transform (FFT), which is a standard technique,

e also require a numerical inverse Laplace transform; for the

atter we use an algorithm proposed by Abate and Whitt (1992a,

995) , which is based on a Fourier series and is derived in a sim-

lar way to their well established numerical inverse z -transform

 Abate & Whitt, 1992b ). Spectral filters are a powerful technique to

mprove Fourier-based option pricing, introduced to this field by

uijter, Versteegh, and Oosterlee (2015) . Cui, Kirkby, and Nguyen

2017) and Phelan et al. (2018) showed that multiplying the Fourier

nput by a spectral filter speeds up the price convergence when the

haracteristic functions decays slowly. At the end, the error con-

ergence of our procedure is slightly worse than first-order poly-

omial; we explain this in detail with reference to the truncation

rror of the sinc-based discrete Hilbert transform. Our results show

hat the error convergence is consistent with the error bound and

he performance of the discretely monitored technique as the mon-

toring interval goes to zero. 

The structure of this paper is as follows. In Section 2 we briefly

un through Fourier, Hilbert, Laplace and z transforms and explain

ow they are used for the calculation of the Spitzer identities. We

hen present a numerical pricing scheme for continuously mon-

tored options and explain its relationship with the FGM pricing

cheme for discrete monitoring. Section 3 provides a discussion of

he error convergence of the pricing technique with special refer-

nce to the truncation error of the sinc-based Hilbert transform.

ection 4 shows the results that were achieved, comparing them

ith the results for the FGM method for discretely monitored op-

ions. 

. Fourier transform methods for option pricing 

In this paper we make extensive use of the Fourier transform

see e.g. Kreyszig, 2011; Polyanin & Manzhirov, 1998 ), an integral

ransform with many applications. Historically, it has been widely

mployed in spectroscopy and communications, therefore much of

he literature refers to the function in the Fourier domain as its

pectrum. According to the usual convention in the financial liter-

ture, the forward and inverse Fourier transforms are defined as

̂ f (ξ ) = F x → ξ [ f (x ) ] = 

∫ + ∞ 

−∞ 

e iξx f (x ) dx, (1)
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f (x ) = F 

−1 
ξ→ x 

[̂ f (ξ ) 
]

= 

1 

2 π

∫ + ∞ 

−∞ 

e −iξx ̂ f (ξ ) dξ . (2)

Let S ( t ) be the price of an underlying asset and x (t) =
log (S(t) /S 0 ) its log-price. To find the price v (x, t) of an option at

time t = 0 when the initial price of the underlying is S(0) = S 0 ,

and thus its log-price is x (0) = 0 , we need to discount the ex-

pected value of the undamped option payoff φ(x (T )) e −αx (T ) at ma-

turity t = T with respect to an appropriate risk-neutral probabil-

ity distribution function (PDF) p ( x , T ) whose initial condition is

p(x, 0) = δ(x ) . As shown by Lewis (2001) , this can be done using

the Plancherel relation, 

v (0 , 0) = e −rT E 

[
φ(x (T ) e −αx (T ) | x (0) = 0 

]
= e −rT 

∫ + ∞ 

−∞ 

φ(x ) e −αx p(x, T ) dx 

= 

e −rT 

2 π

∫ + ∞ 

−∞ 

̂ φ(ξ ) ̂  p ∗(ξ + iα, T ) dξ

= e −rT F 

−1 
ξ→ x 

[̂ φ(ξ ) ̂  p ∗(ξ + iα, T ) 
]
(0) . (3)

Here, ̂ p ∗(ξ + iα, T ) is the complex conjugate of the Fourier trans-

form of e −αx p(x, T ) . To price options using this relation, we need

the Fourier transforms of both the damped payoff and the PDF. A

double-barrier option has the damped payoff

φ(x ) = e αx S 0 
(
θ (e x − e k ) 

)+ 
1 [ l,u ] (x ) , (4)

where θ = 1 for a call, θ = −1 for a put, 1 A ( x ) is the indicator func-

tion of the set A , k = log (K/S 0 ) is the log-strike, u = log (U/S 0 ) is

the upper log-barrier, l = log (L/S 0 ) is the lower log-barrier, K is the

strike price, U is the upper barrier and L is the lower barrier. The

damping factor e αx ensures the integrability of the payoff function;

see Feng and Linetsky (2008) for a full discussion of the selection

of the damping parameter α, and the online supplementary mate-

rial for additional results on the choice of α. The Fourier transform

of the damped payoff φ( x ) is available analytically, 

̂ φ(ξ ) = S 0 

(
e (1+ iξ+ α) a −e (1+ iξ+ α) b 

1 + iξ + α
− e k +(iξ+ α) a −e k +(iξ+ α) b 

iξ + α

)
, (5)

where for a call option a = u and b = max (k, l) , while for a put

option a = l and b = min (k, u ) . 

The Fourier transform of the PDF p ( x , t ) of a stochastic process

X ( t ) is the characteristic function 

�(ξ, t) = E 

[
e iξX(t) 

]
= 

∫ + ∞ 

−∞ 

e iξx p(x, t) dx = F x → ξ [ p(x, t) ] = ̂

 p (ξ , t) . 

(6)

For a Lévy process the characteristic function can be written as

�(ξ, t) = e ψ(ξ ) t , where the characteristic exponent ψ( ξ ) is given

by the Lévy–Khincine formula as 

ψ(ξ ) = iμξ − 1 

2 

σ 2 ξ 2 + 

∫ 
R 

(
e iξη−1 −iξη1 [ −1 , 1] (η) 

)
ν(dη) . (7)

The Lévy–Khincine triplet ( μ, σ , ν) uniquely defines the Lévy pro-

cess: μ defines the linear drift of the process, σ is the volatility of

the diffusion part of the process, and the jump part of the process

is specified so that ν( η) is the intensity of a Poisson process with

jump size η. Under the risk-neutral measure the parameters of the

triplet are linked by the equation 

μ = r − q − 1 

2 

σ 2 −
∫ 
R 

(
e η − 1 − iη1 [ −1 , 1] (η) 

)
ν(dη) , (8)

where r is the risk-free interest rate and q is the dividend rate.

In general the characteristic function of a Lévy process is available

in closed form, for example for the Gaussian ( Schoutens, 2003 ),

normal inverse Gaussian (NIG) ( Barndorff-Nielsen, 1998 ), CGMY
 Carr, Geman, Madan, & Yor, 2002 ), Kou double exponential ( Kou,

002 ), Merton jump-diffusion ( Merton, 1976 ), Lévy alpha-stable

 Nolan, 2018 ), variance gamma (VG) ( Madan & Seneta, 1990 ) and

eixner ( Schoutens, 2003 ) processes. 

Some pricing techniques based on the Fourier transform also

se the Hilbert transform, which is an integral transform related

o the Fourier transform. Unlike with the Fourier transform, the

unction under transformation remains in the same domain, rather

han moving between the x and ξ domains. The Hilbert transform

f a function in the Fourier domain is defined as 

 

[̂ f (ξ ) 
]

= P . V . 
1 

π

∫ + ∞ 

−∞ 

̂ f (ξ ′ ) 
ξ − ξ ′ dξ ′ 

= lim 

ε→ 0 + 

1 

π

(∫ ξ−ε

ξ−1 /ε

̂ f (ξ ′ ) 
ξ −ξ ′ d ξ

′ + 

∫ ξ+1 /ε

ξ+ ε

̂ f (ξ ′ ) 
ξ −ξ ′ d ξ

′ 
)

, (9)

here P.V. denotes the Cauchy principal value. Applying the Hilbert

ransform in the Fourier domain is equivalent to multiplying the

unction in the x domain by −i sgn x . 

Whilst the Fourier and Hilbert transform operate on the state

ariable (here the log-price), the Laplace transform is applied to

ime. The forward and inverse Laplace transforms are 

 t→ s [ f (t)] = 

˜ f (s ) := 

∫ + ∞ 

0 

e −st f (t ) dt , s ∈ C , (10)

 

−1 
s → t [ ̃

 f (s )] = f (t) := 

1 

2 π i 

∫ a + i ∞ 

a −i ∞ 

e st ˜ f (s ) ds, (11)

here a ∈ R is on the right of all singularities of ˜ f (s ) in the

omplex plane. The Laplace transform is closely related to the z -

ransform of a discrete function f (t n ) = f (n ) , n ∈ N 0 , 

 n → q [ f (n )] := 

∞ ∑ 

n =0 

q n f (t n ) , q ∈ C . (12)

iven a continuous function f c ( t ), we define the discrete function

 d ( t n ) consisting of sampled values of the former, where �t is the

ampling interval and t n = n �t are the sampling times. Then with

 z -transform parameter q = e −s �t , the Laplace and z -transforms

re related in the limit �t → ∞ : 

 t→ s [ f c (t)] = 

∫ ∞ 

0 

e −st f c (t) dt = lim 

�t→ 0 
�t 

∞ ∑ 

n =0 

e −sn �t f c (n �t) 

= lim 

�t→ 0 
�t 

∞ ∑ 

n =0 

(e −s �t ) n f d (t n ) = lim 

�t→ 0 
�t 

∞ ∑ 

n =0 

q n f d (t n ) 

= lim 

�t→ 0 
�tZ [ f d (t n ) ] . (13)

.1. Spitzer identities for continuous monitoring 

If we wish to use Eq. (3) to price barrier options, the required

haracteristic functions are more complicated than the closed-form

xpressions referred to above. We need the characteristic function

f the PDF of the value of a stochastic process X ( t ) at time t = T ,

onditional on the process remaining inside continuously moni-

ored upper and lower barriers. We use the identities published

y Spitzer (1956) which were extended to the continuously mon-

tored case by Baxter and Donsker (1957) and to double-barriers

y Kemperman (1963) . The Spitzer identities provide the Fourier- z

ransform of the PDF of a stochastic process X ( t ) at time t = T , con-

itional on whether X ( t ) reaches a barrier at discretely monitored

imes. The Fourier transform is applied to the process values and

he z -transform is applied to the discrete monitoring times. Baxter

nd Donsker (1957) demonstrated that we can obtain the equiva-

ent identities for continuously monitored barriers in the Fourier-

aplace domain. Green et al. (2010) showed that the relationship

etween the Laplace and z -transforms described in Eq. (13) can
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e exploited to price continuously monitored options using the

pitzer identities in the Fourier-Laplace domain. 

An important aspect in the calculation of the Spitzer identi-

ies is the decomposition of a function 

̂ f (ξ ) into + and - parts,̂ f + (ξ ) = F x → ξ

[
f (x ) 1 R + (x ) 

]
and 

̂ f −(ξ ) = F x → ξ

[
f (x ) 1 R − (x ) 

]
, such

hat ̂ f (ξ ) = ̂

 f + (ξ ) + ̂

 f −(ξ ) . This can be done directly in the Fourier

omain using the Plemelj–Sokhotsky relations ( Fusai et al., 2016;

ing, 2009 ): 

 f + (ξ ) = 

1 

2 

{̂ f (ξ ) + i H 

[̂ f (ξ ) 
]}

, (14)

 f −(ξ ) = 

1 

2 

{̂ f (ξ ) − i H 

[̂ f (ξ ) 
]}

. (15)

he shift theorem F x → ξ [ f (x + b)] = ̂

 f (ξ ) e −ibξ allows us to obtain

he generalised Plemelj–Sokhotsky relations for an arbitrary barrier

 : 

 f b+ (ξ ) = 

1 

2 

{̂ f (ξ ) + e ibξ i H 

[
e −ibξ ̂ f (ξ ) 

]}
, (16)

 f b−(ξ ) = 

1 

2 

{̂ f (ξ ) − e ibξ i H 

[
e −ibξ ̂ f (ξ ) 

]}
. (17)

alculating the Spitzer identities also requires us to factorise a

unction, i.e. obtain 

̂ g + (ξ ) and 

̂ g −(ξ ) such that ̂  g (ξ ) = ̂

 g + (ξ ) ̂  g −(ξ ) .

his is achieved by decomposing the logarithm ̂

 h (ξ ) = log ̂  g (ξ ) and

hen exponentiating the results to obtain 

̂ g + (ξ ) = exp ̂

 h + (ξ ) and̂ 

 −(ξ ) = exp ̂

 h −(ξ ) . 

Green et al. (2010) dealt with fluctuation identities that can

e used for lookback, single-barrier and double-barrier options.

ere we concentrate on the identities for single-barrier down-

nd-out and double-barrier options. The first step is always to

actorise �c (ξ , s ) = s − ψ(ξ ) = �c+ (ξ , s )�c −(ξ , s ) . For a single-

arrier down-and-out option, the Laplace transform of the required

haracteristic function is 

 ̂ p (ξ , s ) = 

1 − �c −(ξ , s ) P c l−(ξ , s ) 

�c (ξ , s ) 
= 

P c l+ (ξ , s ) 

�c+ (ξ , s ) 
, (18)

here P c (ξ , s ) = 1 / �c −(ξ , s ) is decomposed with respect to the

ower log-barrier l using Eqs. (16) and (17) . For a double-barrier

ption, the Laplace transform of the required characteristic func-

ion is 

 ̂ p (ξ , s ) = 

1 − �c −(ξ , s ) J c l−(ξ , s ) − �c+ (ξ , s ) J c u + (ξ , s ) 

�c (ξ , s ) 
, (19)

here J c u + (ξ , s ) and J c l−(ξ , s ) are the solution to the pair of cou-

led equations 

 c u + (ξ , s ) = 

[
1 − �c −(ξ , s ) J c l−(ξ , s ) 

�c+ (ξ , s ) 

]
u + 

, (20)

 c l−(ξ , s ) = 

[
1 − �c+ (ξ , s ) J c u + (ξ , s ) 

�c −(ξ , s ) 

]
l−

. (21)

or u → ∞ , J c u + → 0 and J c l− → P c l− we thus recover the Spitzer

dentity for the single barrier, Eq. (18) . The latter can be calculated

irectly, while so far only an iterative solution has been found

 Fusai et al., 2016; Phelan et al., 2018 ) to the coupled Eqs. (20) and

21) . 

.1.1. Relationship to the Spitzer identities for discrete monitoring 

In Section 4 we show numerical results comparing the error

onvergence obtained using the Spitzer identities for continuous

onitoring with the performance of the closely related method us-

ng the Spitzer identities for discrete monitoring ( Fusai et al., 2016;

reen et al., 2010; Phelan et al., 2018 ). 
The relationship between the two methods originates in the

onnection between the z -transform and the Laplace transform de-

cribed in Eq. (13) . As described in Section 2.1 , the first step in

ricing continuously monitored barrier options is the calculation

f �c (ξ , s ) = s − ψ(ξ ) in the Fourier-Laplace domain. The equiv-

lent quantity in the Fourier- z domain for discrete monitoring is

(ξ , q ) = 1 − q �(ξ, �t) . We can use the relation in Eq. (13) with

 = e −s �t to relate the two: 

lim 

t→ 0 

�t 

�(ξ, q ) 
= lim 

�t→ 0 

�t 

1 − q �(ξ, �t) 
= lim 

�t→ 0 

�t 

1 − e −s �t e ψ(ξ )�t 

= lim 

�t→ 0 

�t 

1 − e (ψ(ξ ) −s )�t 
= 

1 

s − ψ(ξ ) 
= 

1 

�c (ξ , s ) 
. (22) 

he same factorisation and decomposition steps described in

ection 2.1 ( Fusai et al., 2016; Green et al., 2010 ) are applied to

oth �( ξ , q ) and �c ( ξ , s ) to price options with respectively dis-

rete or continuous monitoring. 

.2. Numerical methods 

The methods in the previous section are described analytically.

owever, as they involve some expressions which cannot be solved

n closed form, their implementation requires the use of numerical

pproximation techniques which we discuss in the following sec-

ions. 

.2.1. Discrete Fourier and Hilbert transforms and spectral filters 

The forward and inverse Fourier transforms shown in

qs. (1) and (2) are integrals over an infinite domain and in

rder to implement them numerically we need to approximate

ach with a discrete Fourier transform (DFT). We implement this

n practice using the built-in Matlab FFT function which is based

n the FFTW library by Frigo and Johnson (1998) . 

The calculation of the Hilbert transform of a function 

̂ f (ξ ) can

e realised with an inverse/forward Fourier transform pair and

ultiplication by the sign function in between, 

 H 

[̂ f (ξ ) 
]

= F x → ξ

[
sgn (x ) F 

−1 
ξ→ x ̂

 f (ξ ) 
]
. (23)

owever, this results in an error that decreases quadratically with

he grid step �ξ . In order to obtain exponential error convergence,

eng and Linetsky (2008) and Fusai et al. (2016) have implemented

he Hilbert transform using the sinc expansion techniques stud-

ed by Stenger (1993, 2011) . Stenger showed that, given a func-

ion 

̂ f (ξ ) which is analytic in the whole plane, the function and

ts Hilbert transform can be expressed as 

̂ f (ξ ) = 

+ ∞ ∑ 

k = −∞ ̂

 f (k �ξ ) 
sin (π(ξ − k �ξ ) / �ξ ) 

π(ξ − k �ξ ) / �ξ
, (24)

 

[̂ f (ξ ) 
]

= 

+ ∞ ∑ 

k = −∞ ̂

 f (k �ξ ) 
1 − cos (π(ξ − k �ξ ) / �ξ ) 

π(ξ − k �ξ ) / �ξ
. (25)

tenger (1993) also showed that, when the function f ( ξ ) is analytic

n a strip of the complex plane including the real axis, the expres-

ions in Eqs. (24) and (25) are approximations whose error decays

xponentially as �ξ decreases. In addition to discretisation, the in-

nite sum in Eq. (25) must also be truncated to the grid size M , so

hat the Hilbert transform approximation becomes 

 

[̂ f (ξ ) 
]

≈
+ M/ 2 ∑ 

k = −M/ 2 ̂

 f (k �ξ ) 
1 − cos (π(ξ − k �ξ ) / �ξ ) 

π(ξ − k �ξ ) / �ξ
. (26)

eng and Linetsky (20 08, 20 09) showed that if ̂ f (ξ ) decays at least

xponentially as | ξ | → ∞ , i.e. ̂ f (ξ ) ≤ κ exp (−c| ξ | ν ) , then the error

n the Hilbert transform and thus in the Plemelj–Sokhotsky re-

ations caused by truncating the series in Eq. (25) is also expo-

entially bounded. Furthermore, Feng and Linetsky showed that
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Fig. 1. Shape of the exponential filter plotted with different values of p . 
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if ̂ f (ξ ) is polynomially bounded then, although the accuracy of

the series in Eq. (25) is retained, the error caused by truncating

the sum is no longer exponentially bounded. However, it has sub-

sequently been shown that multiplying the input to the Hilbert

transform by a filter can improve the error convergence ( Phelan

et al., 2018 ). 

In the papers by Gottlieb and Shu (1997) and Vandeven (1991) ,

a filter of order p is defined as a function σ ( η) supported on η ∈
[ −1 , 1] with the properties 

a) σ (0) = 1 , σ (l) (0) = 0 , 

b) σ (η) = 0 for | η| = 1 , (27)

c) σ (η) ∈ C p−1 . 

The scaled variable η is related to ξ in our application as η =
ξ/ξmax . In this paper we use the exponential filter, which has the

form ( Gottlieb & Shu, 1997 ) 

σ (η) = e −ϑηp 

, (28)

where p is even. This does not strictly meet criterion b in

Eq. (27) as it does not go exactly to zero when | η| = 1 . However,

if we select ϑ< εlog 10, where 10 −ε is the machine precision, then

the filter coefficients are within computational accuracy of the re-

quirements. The exponential filter has the advantages that it has a

simple form and that it can be used for any even value of p . More-

over, the order of the filter is a parameter which is directly input to

the filter equation. Filter shapes for a range of p values are shown

in Fig. 1 . Many filters other than the exponential can be used,

e.g. the Planck taper ( McKechan, Robinson, & Sathyaprakash, 2010;

Phelan et al., 2018 ) and the raised cosine ( Ruijter et al., 2015 ). 

2.2.2. Inverse Laplace transform 

The Spitzer identities provide the Laplace transform of the char-

acteristic function, so to calculate the option price using Eq. (3) we

must apply the inverse Laplace transform. We implement the nu-

merical scheme by Abate and Whitt (1995) , which uses the trape-

zoidal rule to approximate the analytic expression for the inverse

Laplace transform shown in Eq. (11) with 

f (t) ≈ e A/ 2 

2 t 
Re ̃  f 

(
A 

2 t 

)
+ 

e A/ 2 

t 

∞ ∑ 

k =1 

(−1) k Re ̃  f 

(
A + 2 kπ i 

2 t 

)
, (29)

where ˜ f 
(

A +2 kπ i 
2 t 

)
is the Laplace transform 

˜ f (s ) with s = 

A +2 kπ i 
2 t . The

value of A controls the accuracy of the approximation; an accuracy

of 10 −γ requires A = γ log (10) . We then use the Euler transform to

accurately approximate this infinite series. First the partial sums 

b k = 

e A/ 2 

2 t 
Re ̃  f 

(
A 

2 t 

)
+ 

e A/ 2 

t 

k ∑ 

j=1 

(−1) j Re ̃  f 

(
A + 2 jπ i 

2 t 

)
(30)

are calculated for k = n E , . . . , n E + m E . We then take the binomially

weighted average (Euler transform) of these terms, resulting in the
pproximation 

f (t) ≈ 1 

2 

m E 

m E ∑ 

k =0 

(
m E 

k 

)
b n E + k . (31)

he values of m E and n E are selected large enough to give sufficient

ccuracy, but low enough to avoid unnecessary computational ef-

ort. Numerical tests were carried out inverting the Laplace trans-

orm of a delayed unit step function 

˜ f (s ) = e −τ s /s where the de-

ay τ = 10 . This is an extreme test case as the step function has

 jump discontinuity and Abate and Whitt (1992a) state that the

erformance bound of 10 −γ = e −A does not apply in the presence

f jumps. However it is important to consider the performance of

he inverse Laplace transform with discontinuities in the time do-

ain as the value of the contracts that we are pricing will abruptly

ecome zero on expiry. The recovered functions for different val-

es of A , m E and n E are shown in Fig. 2 and the errors are shown

n Figs. 3 and 4 . The empirical results in Fig. 4 show that we can

elect values for A , m E and n E so that, away from the discontinu-

ty, the performance matches the bound of 10 −γ = e −A specified by

bate and Whitt. Furthermore, we show in Sections 3 and 4 that

he error bounds and observed results for the pricing procedure

re limited by the performance of the sinc-based Hilbert transform.

herefore, we can use the Abate and Whitt inverse Laplace trans-

orm method to price mid- to long-dated options. 

We base the selection of the parameters for the inverse Laplace

ransform on empirical results. From Figs. 2 and 3 we can see that

he size of the oscillations due to the discontinuity are predomi-

antly affected by m E and n E . The error floor is controlled by A ;

he values of 18.4, 23 and 27 in Figs. 2–4 correspond to errors of

pproximately 10 −8 , 10 −10 and 10 −12 . However, Fig. 4 shows that

he noise around the error floor is ≈ 10 −10 and therefore there is

o advantage in selecting values of A larger than 23. For the pric-

ng calculations we use A = 23 , m E = 61 and n E = 100 , which give

 combination of high accuracy and fast computation time. See the

nline supplementary material for additional results on the choice

f the parameters A , m E and n E . 

.2.3. Pricing procedure: single-barrier options 

We describe the pricing procedure for single-barrier down-and-

ut options as an example, but the use of the Spitzer identities

s equally applicable to other types of barrier options and also to

ookback options; the pricing formulae described by Green et al.

2010) include methods for single-barrier up-and-out and knock-in

ptions. The pricing method is adapted from the scheme by Fusai

t al. (2016) and Phelan et al. (2018) using the relationship be-

ween �( ξ , q ) and �c ( ξ , s ) described in Section 2.1.1 . 

1. Compute the characteristic exponent ψ(ξ + iα) , where α is

the damping parameter introduced in Section 2 , Eq. (4) . 
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Fig. 2. Output of the inverse Laplace transform of ˜ f (s ) = 

e −10 s 

s 
. Increasing m E and n E reduces the size of the oscillations, but it is not improved by increasing A . 

Fig. 3. Error of the inverse Laplace transform of ̃  f (s ) = 

e −10 s 

s 
. Increasing m E and n E reduces the size of the errors due to the oscillations, but it is not improved by increasing 

A . 

Fig. 4. Error of the inverse Laplace transform of ˜ f (s ) = 

e −10 s 

s 
. Increasing A decreases the error floor, while the latter is unaffected by increasing m E and n E . The noise on the 

error floor is ≈ 10 −10 . 

 

 

 

 

2. Use the Plemelj–Sokhotsky relations with the sinc-based

Hilbert transform to factorise 

�c (ξ , s ) := s − ψ(ξ + iα) = �c+ (ξ , s )�c −(ξ , s ) (32)

for all s = 

A +2 kπ i 
2 t required for the inverse Laplace transform

in Eq. (30) . 
3. Decompose with respect to l 

P c (ξ , s ) := 

σ (ξ/ξmax ) 

�c −(ξ , s ) 
= P c l+ (ξ , s ) + P c l−(ξ , s ) , (33)

and calculate 
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˜ ̂ p (ξ , s ) := 

P c l+ (ξ , s ) 

�c+ (ξ , s ) 
, (34)

where σ ( ξ / ξmax ) is an exponential filter of order p (see

Section 3.2 ). 

4. Calculate the option price as 

v (0 , 0) := F 

−1 
ξ→ x 

[̂ φ∗(ξ ) L 

−1 
s → T ̃

 ̂ p (ξ , s ) 
]
(0) , (35)

where ̂ φ∗(ξ ) is the complex conjugate of the Fourier trans-

form of the damped payoff function given in Eq. (5) . 

2.2.4. Pricing procedure: double-barrier options 

The pricing procedure for double-barrier options is very sim-

ilar to the method for the single-barrier options described in

Section 2.2.3 , in that it uses Wiener–Hopf factorisation and decom-

position to compute the appropriate Spitzer identity. However, the

major difference in this case is that the equations cannot be solved

directly and so require the use of a fixed-point algorithm. The steps

in the pricing procedure are the same as those for single-barrier

down-and-out options described in Section 2.2.3 with the excep-

tion of Step 3 which is now replaced by the fixed-point algorithm 

3 (a) Set J c u + (ξ , s ) = J c l−(ξ , s ) = 0 . 

(b) Decompose with respect to l 

P c (ξ , s ) : = σ

(
ξ

ξmax 

)
1 − �c+ (ξ , s ) J c u + (ξ , s ) 

�c −(ξ , s ) 

= P c l+ (ξ , s ) + P c l−(ξ , s ) , (36)

and set J c l−(ξ , s ) := P c l−(ξ , s ) . 

(c) Decompose with respect to u 

Q c (ξ , s ) : = σ

(
ξ

ξmax 

)
1 − �c −(ξ , s ) J c l−(ξ , s ) 

�c+ (ξ , s ) 

= Q c u + (ξ , s ) + Q c u −(ξ , s ) , (37)

and set J c u + (ξ , s ) := Q c u + (ξ , s ) . 

(d) Calculate 

˜ ̂ p (ξ , s ) : = σ

(
ξ

ξmax 

)
×

1 − �c −(ξ , s ) J c l−(ξ , s ) − �c+ (ξ , s ) J c u + (ξ , s ) 

�c (ξ , s ) 
. 

(38)

(e) If the difference between the new and the old value of˜ ̂ p (ξ , s ) is less than a predefined tolerance or the number of

iterations is greater than a certain threshold then continue,

otherwise return to step (b). Numerical tests have shown

that an iteration threshold of 5 is sufficient, as higher val-

ues do not yield improvements. 

3. Error convergence of the pricing procedure 

We examine the performance of each stage of the pricing

procedure and discuss the respective error bounds. In addition,

the effect of each step on the shape of the output function in the

Fourier domain is investigated, as this influences the error conver-

gence of later steps. Stenger (1993) showed that the discretisation

error in Eq. (25) is exponentially convergent when the function

f ( ξ ) is analytic in a strip of the complex plane including the real

axis. Therefore the error calculations here concern the truncation

error from the approximation in Eq. (26) . The truncation error

using the sinc-based Hilbert transform depends on the behaviour

of the characteristic exponent as | ξ | → ∞ : Table 1 shows the

characteristic exponents of five Lévy processes. The damping

parameter α is omitted to make the notation more concise, which

is appropriate as its value becomes insignificant for | ξ | → ∞ . 
.1. Factorisation 

After calculating the characteristic exponent, the next step in

he pricing procedure is the numerical factorisation of �c (ξ , s ) =
 − ψ(ξ ) . In order to understand the error convergence we must

onsider the way that the function behaves for large values of | ξ |.

he characteristic exponents of the processes listed in Table 1 will

ake high negative values which will dominate �c ( ξ , s ) so that

s | ξ | → ∞ we can approximate s − ψ(ξ ) ∼ −ψ(ξ ) . The func-

ion to be decomposed in the factorisation stage is therefore

log [ −ψ(ξ )] . The magnitude of this increases with | ξ |, so the

ounds for the truncation error of the sinc-based Hilbert transform

 Feng and Linetsky, 2008 , Theorems 6.4–6.6) cannot be used. More-

ver, if we consider the truncation errors from Eq. (26) for posi-

ive and negative values of k individually, we obtain two infinite

ummations that do not converge. However, Table 1 shows that as

 ξ | → ∞ the values of ψ( ξ ) and ψ(−ξ ) will become increasingly

imilar. We can exploit this similarity to find a bound by combin-

ng the positive and negative truncations: the truncation error of

f (ξ ) = H[ log �c (ξ , s )] is bounded as 

 f �ξ (ξ ) − f �ξ,M 

(ξ ) | = �ξ

∣∣∣∣∣ ∑ 

k< −M/ 2 

log �c (k �ξ, s ) 
1 −cos 

(
π ξ−k �ξ

�ξ

)
π( ξ − k �ξ ) 

+ 

∑ 

k>M/ 2 

log �c (k �ξ, s ) 
1 − cos 

(
π ξ−k �ξ

�ξ

)
π( ξ − k �ξ ) 

∣∣∣∣∣
< �ξ

∑ 

k>M/ 2 

∣∣∣∣ log �c (k �ξ, s ) 

π(ξ − k �ξ ) 

(
1 − cos 

(
π

ξ − k �ξ

�ξ

))
+ 

log �c (−k �ξ, s ) 

π(ξ + k �ξ ) 

(
1 − cos 

(
π

ξ + k �ξ

�ξ

))∣∣∣∣
≤ 2�ξ

π

∑ 

k>M/ 2 

∣∣∣∣∣ξ
(

log �c (k �ξ, s ) + log �c (−k �ξ, s ) 
)

ξ 2 − k 2 �ξ 2 

+ 

k �ξ
(

log �c (k �ξ, s ) − log �c (−k �ξ, s ) 
)

ξ 2 − k 2 �ξ 2 

∣∣∣∣∣, (39)

here f �ξ ( ξ ) is the value of the infinite summation in Eq. (25) and

 �ξ , M 

( ξ ) is the result of the truncated summation in Eq. (26) . The

wo cosines are equal because the difference of their arguments is

 k π ; thus | 1 − cos (. ) | ≤ 2 can be factored out. 

The next step in bounding the error convergence is to show

hat the expression in Eq. (39) is dominated by the first sum

s M → ∞ . As ψ(k �ξ) ∼ ψ(−k �ξ) for k → ∞ , log �c (k �ξ, s ) −
og �c (−k �ξ, s ) → 0 as k → ∞ . However, k �ξ is also present in

he numerator and increases linearly with k . By determining the

ate of decrease of log �c (k �ξ, s ) − log �c (−k �ξ, s ) , we show

hat the second term is bounded as O (1/ k 2 ) and therefore the first

erm dominates Eq. (39) . We then calculate a bound for the error

ased on the first summation term in Eq. (39) . These steps are car-

ied out in a slightly different way depending on the form of the

haracteristic exponents shown in Table 1 . 

.1.1. Normal, Merton and Kou processes 

For the normal, Merton and Kou processes, when k → ∞ ,

c ( k �ξ ) becomes dominated by σ (k �ξ) 2 − iμk �ξ as shown in

able 1 . The parameters μ and σ are specific to the distribution.

e can therefore approximate the second fraction in the summa-

ion by 

k �ξ
(

log �c (k �ξ, s ) − log �c (−k �ξ, s ) 
)

ξ 2 − k 2 �ξ 2 

= 

k �ξ

ξ 2 − k 2 �ξ 2 
log 

�c (k �ξ, s ) 

�c (−k �ξ, s ) 
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∼ k �ξ

ξ 2 − k 2 �ξ 2 
log 

σ 2 (k �ξ ) 2 / 2 + iμ(k �ξ ) 

σ 2 (k �ξ ) 2 / 2 − iμ(k �ξ ) 

= 

k �ξ

ξ 2 − k 2 �ξ 2 
log 

1 + 2 iμ/ (σ 2 k �ξ ) 

1 − 2 iμ/ (σ 2 k �ξ ) 
. (40) 

he logarithm in Eq. (40) is of the form log 1+ x 
1 −x where x = 

2 iμ
σ 2 k �ξ

.

or x → 0 , log 1+ x 
1 −x ∼ 2 x, thus 

k �ξ

ξ 2 − k 2 �ξ 2 
log 

1 + 2 iμ/ (σ 2 k �ξ ) 

1 − 2 iμ/ (σ 2 k �ξ ) 
∼ k �ξ

ξ 2 − k 2 �ξ 2 

4 iμ

σ 2 k �ξ

= 

4 iμ

σ 2 ( ξ 2 − k 2 �ξ 2 ) 
(41) 

ives an approximation for the second term in Eq. (39) . Due

o the denominator, this is O (1/ k 2 ). Thus, as log �c (k �ξ, s ) +
og �c (−k �ξ, s ) increases with k , the error is indeed dominated

y the first term in Eq. (39) . 

For the normal, Kou and Merton processes, �c ( k �ξ , s ) and

c (−k �ξ, s ) → 2 log | k �ξ | as k → ∞ . Therefore, the error bound

s 

 f �ξ (ξ ) − f �ξ,M 

(ξ ) | < 

c 1 �ξ

π

∑ 

k>M/ 2 

∣∣∣∣ log �c (k �ξ, s ) 

ξ 2 − k 2 �ξ 2 

∣∣∣∣
< c 2 �ξ

∑ 

k>M/ 2 

log (k 2 �ξ 2 ) 

k 2 �ξ 2 
, (42) 

here c 1 and c 2 are some constants. Here, as Eq. (42) gives the

rror at fixed values of ξ , i.e. the chosen grid points, the ξ can be

bsorbed into c 1 . However, as M increases, our range of ξ values

ncreases. Therefore, as there is a linear dependence of the error

ound on ξ , we should consider the effect of errors at large values

f ξ on the error of the final solution. In doing this we can take

ccount of the shape of the output from the factorisation �c ± ( ξ ,

 ) which decays as | ξ | → ∞ and the use of a filter on the input to

he next step as described in Section 3.2 . These effects combine to

ean that the error as a proportion of the value of �c ± ( ξ , s ) at

igh | ξ | is less significant to the error of the overall solution than

he relationship between the value of M and the error in �c ± ( ξ , s )

or low values of | ξ |. Approximating the summation by an integral,

e obtain 

 f �ξ (ξ ) − f �ξ,M 

(ξ ) | < c 3 

∫ + ∞ 

M�ξ/ 2 

log ξk 

ξ 2 
dξk 
k 

ig. 5. Right-hand side of Eq. (44) plotted for different values of κ (left: positive values;

umerical factorisation of �c ( ξ , s ). The predicted error bound from the factorisation has a

lightly shallower than O (1/ M ) for the values of M which we are using. Sections 3.1.1 –3.1.3
= c 3 

[
log ξk 

ξk 

+ 

1 

ξk 

]M�ξ/ 2 

+ ∞ 

= c 3 

(
log (M�ξ/ 2) 

M�ξ/ 2 

+ 

1 

M�ξ/ 2 

)
(43) 

here c 3 is some constant. Having applied the sinc-based discrete

ilbert transform we can calculate the positive and negative func-

ions using the Plemelj–Sokhotsky relations and then exponentiate

he results to obtain the Wiener–Hopf factors. Therefore, using the

xpression in Eq. (43) , we can bound the truncation error of the

iener–Hopf factors, and by extension the total error as the trun-

ation error dominates, as 

��ξ, c ±(ξ ) − ��ξ,M, c ±(ξ ) 

��ξ, c ±(ξ ) 

∣∣∣∣ < 

∣∣1 − (eM�ξ/ 2) 
κ

M�ξ/ 2 

∣∣, (44) 

here κ is some constant. Here, ��ξ , c ± ( ξ ) denotes the (theoreti-

al) Wiener–Hopf factors generated using the series in Eq. (25) and

�ξ , M , c ± ( ξ ) denotes the Wiener–Hopf factors calculated using

he truncated summation in Eq. (26) . 

Fig. 5 shows the right-hand side of Eq. (44) plotted against the

runcation limit ξtr = M�ξ/ 2 for different values of κ . This demon-

trates that the predicted error bound from the factorisation has a

ecay that increases in slope as M increases and is slightly shal-

ower than O (1/ M ) for the values of M which we are using. 

.1.2. Normal inverse Gaussian process 

In the case of the NIG process the characteristic exponent is 

(ξ ) = δ
(√ 

α2 − (β + iξ ) 2 −
√ 

α2 − β2 
)
. (45) 

he presence of a square root around the i ξ and ξ 2 terms

eans that as | k | → ∞ , the equivalent expression to the loga-

ithm in Eq. (40) is 1 
2 log 1+2 iβ/ (k �ξ ) 

1 −2 iβ/ (k �ξ ) 
. Furthermore, �c ( k �ξ , s ) and

c (−k �ξ, s ) become dominated by log | k �ξ | as | k | → ∞ . Therefore

he only difference between the truncation error bound for the NIG

rocess and the result in Eq. (43) is the size of the constants. 

.1.3. Variance gamma process 

The characteristic function of the VG process is 

(ξ ) = − 1 

ν
log 

(
1 − iξθν + 

1 

2 

νσ 2 ξ 2 
)
. (46) 

his is significantly different from the other characteristic expo-

ents that we have considered, being the log of a polynomial. Simi-

arly to the previous methods, we show that as k → ∞ the decrease
 right: negative values) to show the estimate of the error bound on the sinc-based 

 decay that increases in slope as the truncation limit ξtr = M�ξ/ 2 increases and is 

 show that this bound applies for the normal, NIG, Kou, Merton and VG processes. 
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Fig. 6. Example plot of the real and imaginary parts of �c+ (ξ , s ) plotted against ξ with s = A/ (2 t) , as specified for the Abate and Whitt inverse Laplace transform. Although 

| �c+ (ξ , s ) | is bounded by a constant as | ξ | → ∞ , the rate of decay is very slow and we have not been able to determine a decreasing bound. 
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i  
rate of log �c (k �ξ,s ) 
�c (−k �ξ,s ) 

is at least O (1/ k ): 

log 
�c (k �ξ, s ) 

�c (−k �ξ, s ) 
∼ log 

log (−ik �ξθν + νσ 2 (k �ξ ) 2 / 2) 

log 
(
ik �ξθν + νσ 2 (k �ξ ) 2 / 2 

)
= log 

log 

(
1 − 2 ik �ξθν

νσ 2 (k �ξ ) 2 

)
+ log νσ 2 (k �ξ ) 2 

2 

log 

(
1 + 

2 ik �ξθν
νσ 2 (k �ξ ) 2 

)
+ log νσ 2 (k �ξ ) 2 

2 

∼ log 
− 2 ik �ξθν

νσ 2 (k �ξ ) 2 
+ log νσ 2 (k �ξ ) 2 

2 

2 ik �ξθν
νσ 2 (k �ξ ) 2 

+ log νσ 2 (k �ξ ) 2 

2 

= log 
1 − 2 iθ

σ 2 k �ξ log ( νσ 2 (k �ξ ) 2 / 2 ) 

1 + 

2 iθ
σ 2 k �ξ log ( νσ 2 (k �ξ ) 2 / 2 ) 

∼ −4 iθ

σ 2 k �ξ log 
(
νσ 2 (k �ξ ) 2 / 2 

) . (47)

This decreases quicker than O (1/ k ) and thus Eq. (39) is dominated

by the first term. The expression equivalent to Eq. (42) for the VG

process is 

| f �ξ − f �ξ,M 

| < 

c 1 �ξ

π

∑ 

k>M/ 2 

∣∣∣∣ log �c (k �ξ, s ) 

ξ 2 − k 2 �ξ 2 

∣∣∣∣
< c 2 �ξ

∑ 

k>M/ 2 

∣∣∣∣ log log (k 2 �ξ 2 ) 

k 2 �ξ 2 

∣∣∣∣, (48)

where c 1 and c 2 are positive constants. As |log log x | is bounded by

|log x | as x → ∞ , the factorisation error of the method with the VG

process is also bounded as in Eq. (44) . 

3.2. Decomposition error 

The output of the factorisation is shown in Fig. 6 . The next step

in the calculation is to find the positive part with respect to l of

P c (ξ , s ) = 

1 
�c −(ξ ,s ) 

. We can attempt to bound the truncation error

of this calculation by combining the errors from the positive and

negative truncations as before: ∣∣ f �ξ (ξ ) − f �ξ,M 

(ξ ) 
∣∣< 

�ξ

π

∑ 

k>M/ 2 

∣∣∣∣ P c (k �ξ ) 

ξ − k �ξ
+ 

P c (−k �ξ ) 

ξ + k �ξ

∣∣∣∣< 

�ξ

π
×

∑ 

k>M/ 2 

∣∣∣∣ξ [ P c (k �ξ ) + P c (−k �ξ )] + k �ξ [ P c (k �ξ ) − P c (−k �ξ )] 

ξ 2 − (k �ξ ) 2 

∣∣∣∣. 
(49)
t  
ig. 6 shows that for high | ξ |, | P c (ξ ) − P c (−ξ ) | is bounded from

bove by a constant; however, we do not have a decreasing

ound for | P c (ξ ) − P c (−ξ ) | . Therefore we can only bound a part

f Eq. (49) as ∑ 

>M/ 2 

∣∣∣∣k �ξ [ P c (k �ξ ) − P c (−k �ξ )] 

ξ 2 − (k �ξ ) 2 

∣∣∣∣ < c 1 
∑ 

k>M/ 2 

∣∣∣∣ k �ξ

ξ 2 − (k �ξ ) 2 

∣∣∣∣
< c 2 

∑ 

k>M/ 2 

1 

k �ξ
, (50)

here c 1 and c 2 are some positive constants, but a harmonic se-

ies does not converge. We can compare this with the discretely

onitored version from Fusai et al. (2016) where the first date is

aken out of the scheme, meaning that the function undergoing

ecomposition is multiplied with the characteristic function. For

rocesses other than VG, this restores the exponential slope of the

unction for high values of ξ , which again means that the trun-

ation error of the sinc-based discrete Hilbert transform is expo-

entially bounded. To improve the error of the decomposition in

he continuously monitored case we can improve the slope of the

unction on the input to the Hilbert transform by using a spectral

lter. We use an exponential filter which has previously achieved

ood results in option pricing applications ( Phelan et al., 2018; Rui-

ter et al., 2015 ). The filter is described by Eq. (28) and its shape

s shown in Fig. 1 . Numerical tests have shown that the use of this

lter improves the error of the decomposition step so that it no

onger limits the error convergence of the pricing scheme. How-

ver, the overall error of the pricing procedure will be continue to

e limited by the error from the initial factorisation step as de-

cribed in Eq. (44) and shown in Fig. 5 . 

. Results 

We present results for the Spitzer–Laplace pricing procedure for

ontinuously monitored single and double-barrier options for the

IG, Kou and VG processes. We also show that the error conver-

ence represents a limiting case of the performance of the FGM

ethod for discretely monitored options as N → ∞ and �t → 0,

here N is the number of monitoring dates and �t is the time

nterval between them. 

.1. Results for the Spitzer-Laplace method for continuously 

onitored options 

The error convergence for single-barrier down-and-out options

s shown in Fig. 7 . Fig. 8 shows the results for double-barrier op-

ions. The computed prices are given in Tables 2 and 3 for single
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Fig. 7. Error convergence for a continuously monitored single-barrier option.The error convergence conforms to the calculated error bound (only the first point of the Kou 

process deviates slightly from the overall behaviour) and shows the typical sub-polynomial error convergence for higher values of M . 

Fig. 8. Error convergence for the continuously monitored double-barrier option. The absolute error is worse than that for the single-barrier option, but the error convergence 

conforms to the calculated error bound. 
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Fig. 9. Error for discretely monitored barrier options (left: single barrier; right: double barrier) used as an approximation of the price for the continuously monitored case, 

plotted as a function of the number of monitoring dates N. The error is calculated as the difference between the prices for discrete and continuous monitoring at the 

maximum grid size M = 2 17 . The error for the Kou process converges as O (1 / 
√ 

N ) , whereas the error for the NIG and VG processes converges approximately as O (1/ N ). 

Table 2 

Prices calculated for single-barrier options with the contract details and process pa- 

rameters described in Table 6 in Appendix A and M = 2 17 . 

Process Price 

Normal inverse Gaussian 4.77403523401E −2 

Kou 4.32042632202E −2 

Variance gamma 4.70627023105E −2 

Table 3 

Prices calculated for double-barrier options with the contract details and process 

parameters described in Table 6 in Appendix A and M = 2 17 . 

Process Price 

Normal inverse Gaussian 2.78787488E −2 

Kou 3.30368034E −2 

Variance gamma 2.82666693E −2 
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Fig. 10. Error as a function of the grid size M for continuously monitored single-barrier options compared to discretely monitored options as the number of monitoring 

dates N increases. The error for each number of dates (including continuous monitoring) is calculated against the price for the same number of dates with 2 18 grid points. 

For all processes, as �t → 0 the slope of the error convergence of the discretely monitored scheme approaches that of the continuously monitored scheme. 

Fig. 11. Error as a function of the grid size M for continuously monitored double-barrier options compared to discretely monitored options as the number of monitoring 

dates N increases. The error for each number of dates (including continuous monitoring) is calculated against the price for the same number of dates with 2 18 grid points. 

For all processes, as �t → 0 the slope of the error convergence of the discretely monitored scheme approaches that of the continuously monitored scheme. 
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and double-barrier options respectively. Although the absolute er-

ror is worse for double-barrier options, the speed of error conver-

gence is very similar for all cases and is slightly worse than O (1/ M ),

which concurs with the simulated results for the factorisation er-

ror shown in Fig. 5 . The details of the contract and underlying pro-

cesses are shown in Table 6 in Appendix A . See the online supple-

mentary material for additional results on the effect of a spectral

filter on the error convergence. 

4.2. Comparison with the error convergence of the Spitzer- z pricing 

method for discretely monitored options 

In Section 2.1.1 we described the relationship between the

Fourier-Laplace based method for continuously monitored options

and the FGM method, based in the Fourier- z domain, for discretely

monitored options. The latter method, as measured for a single

barrier in Fusai et al. (2016) and double barriers in Phelan et al.

(2018) , with the number of monitoring dates up to N ≈ 10 3 , is ex-

ponentially convergent with the number of grid points for the NIG

and Kou processes and better than second order polynomially con-

vergent for the VG process. Therefore we investigate the perfor-

mance of the discretely monitored method with a very high num-

ber of dates (i.e. as �t → 0), to better understand the difference in

performance between the two pricing schemes. 

In Green et al. (2010) the error between the discretely and con-

tinuously monitored prices was shown to be bounded as O (1 / 
√ 

N ) ,
here N is the number of monitoring dates. We therefore also con-

ider whether lower errors might be achieved by approximating

he price for a continuously monitored option with the price for a

iscretely monitored option with a very high number of monitor-

ng dates. 

We use the same implementation as the one described in Fusai

t al. (2016) for single-barrier options and Phelan et al. (2018) for

ouble-barrier options, although the maximum number of moni-

oring dates is far higher than would ever be used for discretely

onitored options in practice. Due to the O (1 / 
√ 

N ) error bound

etween the prices for continuously and discretely monitored op-

ions, we must select a very large number of monitoring dates

n order for this effect to be less significant than the error from

he continuously monitored pricing method. The error convergence

f the discrete pricing method as N → ∞ (or �t → 0) is shown in

igs. 10 and 11 . The results show that as �t → 0, the error con-

ergence for discrete monitoring degrades until it approaches that

f continuously monitored options. Moreover, it demonstrates that,

ather than being an anomaly, the error convergence of the contin-

ously monitored method is consistent with that of the discretely

onitored method as �t → 0. This can be understood by consid-

ring how �( ξ , �t ) changes with �t for the discrete example.

s �t → 0, �(ξ, �t) = e ψ(ξ )�t decays to 0 more and more slowly

s | ξ | → ∞ . Therefore the error convergence of the pricing tech-

ique for continuously monitored barrier options is a limit of the

rror convergence for the discrete case as �t → 0. The relationship
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Fig. 12. Price plotted against the grid size M for continuously monitored single-barrier options compared to discretely monitored options as the number of monitoring dates 

N increases. Note that the larger the value of N , the closer the price is to the continuously monitored option price. 

Fig. 13. Price plotted against grid size M for continuously monitored double-barrier options compared to discretely monitored options as the number of monitoring dates N 

increases. Note that the larger the value of N , the closer the price is to the continuously monitored option price. 
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Table 4 

CPU times and errors for the continuously monitored method and the discretely 

monitored method as an approximation to continuous monitoring for the single- 

barrier case. The CPU times for the discretely monitored price are chosen for the 

grid size M which gives the lowest CPU time where the convergence error is signif- 

icantly (about ten times) lower than the error compared to the continuously moni- 

tored price. 

Process N Error CPU time/s M 

NIG continuous 3.21E −04 0.07 1024 

1008 1.60E −04 0.07 4096 

continuous 1.86E −04 0.13 2048 

continuous 5.74E −05 0.50 8192 

continuous 1.69E −05 2.03 32768 

Kou 252 3.02E −04 0.01 512 

continuous 1.57E −04 0.02 256 

504 2.03E −04 0.01 512 

continuous 1.57E −04 0.02 256 

1008 1.47E −04 0.02 1024 

continuous 1.57E −04 0.02 256 

continuous 6.69E −05 0.12 2048 

continuous 2.35E −05 0.49 8192 

continuous 7.36E −06 2.07 32768 

VG 252 2.31E −04 0.04 2048 

continuous 2.57E −04 0.06 1024 

504 1.13E −04 0.11 4096 

continuous 1.49E −04 0.17 2048 

1008 5.29E −05 0.14 8192 

continuous 4.74E −05 0.49 8192 

continuous 1.43E −05 2.01 32768 

continuous 4.19E −06 11.52 131072 
etween the error convergence of the methods with discrete and

ontinuous monitoring is examined in more detail in the online

upplementary material. 

Computed prices for continuously and discretely monitored op-

ions are plotted against M in Figs. 12 and 13 . In addition, compu-

ation times of the pricing methods for the discrete and continu-

usly monitored methods are shown in Tables 4 and 5 . Figs. 12 and

3 show that, as expected, the larger the number of monitoring

ates the closer the price is to the continuously monitored price.

owever, they also show that the direction of convergence de-

ends on the type of option and the process being used. Therefore,

n order to obtain the CPU times in Tables 4 and 5 we take the

owest time where the convergence error for the discretely moni-

ored method is significantly (i.e., ten times) lower than the error

ompared to the price for the continuously monitored case with

aximum M . This shows that for relatively high errors, ≈ 10 −4 for

 single barrier and ≈ 10 −2 for double barriers, the discretely mon-

tored method is slightly quicker. However, the discretely moni-

ored method is unable to achieve the lower errors, ≈ 10 −6 for a

ingle barrier and ≈ 10 −4 for double barriers, which are attained

y the continuously monitored method and therefore is not a suf-

ciently accurate approximation. 

Can we can achieve a better approximation of the continuous

ethod by increasing the number of monitoring dates further?

revious literature, e.g. Green et al. (2010) , has shown that the con-

ergence of the discrete method to the continuous method with

ncreasing monitoring dates is O (1 / 
√ 

N ) . From Fig. 9 we can ob-

erve that, although the discrete method with the Kou process
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Table 5 

CPU times and errors for the continuously monitored method and the discretely 

monitored method as an approximation to continuous monitoring for the double- 

barrier case. The CPU times for the discretely monitored price are chosen for the 

grid size M which gives the lowest CPU time where the convergence error is signif- 

icantly (about ten times) lower than the error compared to the continuously moni- 

tored price. 

Process N Error CPU time/s M 

NIG 252 2.35E −02 0.16 4096 

continuous 2.38E −02 0.11 512 

504 1.32E −02 0.14 4096 

continuous 1.48E −02 0.24 1024 

1008 7.24E −03 0.29 8192 

continuous 8.78E −03 0.54 2048 

continuous 1.58E −03 5.03 16384 

continuous 4.69E −04 20.94 65536 

Kou 252 4.90E −02 0.03 1024 

continuous 3.54E −02 0.07 256 

504 3.51E −02 0.07 2048 

continuous 3.54E −02 0.07 256 

1008 2.47E −02 0.04 1024 

continuous 2.84E −02 0.14 512 

continuous 7.23E −03 1.19 4096 

continuous 2.33E −03 5.30 16384 

continuous 7.03E −04 21.05 65536 

VG 252 5.10E −03 0.08 2048 

continuous 6.86E −03 0.24 1024 

504 2.51E −03 0.13 4096 

continuous 2.40E −03 1.15 4096 

1008 1.15E −03 0.29 8192 

continuous 1.36E −03 2.44 8192 

continuous 7.56E −04 5.16 16384 

continuous 2.25E −04 21.21 65536 
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Table 6 

Parameters for the numerical tests and processes used; �( ξ , t ) is the characteristic 

function of the process that models the log return of the underlying asset. 

Description Symbol Value 

Option parameters Maturity T 1 

Initial spot price S 0 1 

Strike K 1.1 

Upper barrier (double barrier) U 1.40 

Lower barrier (double barrier) L 0.60 

Upper barrier (down-and-out) U + ∞ 

Lower barrier (down-and-out) L 0.80 

Risk-free interest rate r 0.05 

Dividend rate q 0.02 

Model �( ξ , t ) Symbol Value 

NIG e 
−t 

(√ 

α2 −(β+ iξ ) 2 + 
√ 

α2 −β2 

)
α 15 

β −5 

δ 0.5 

Kou e 

−t 

⎛ ⎝ σ 2 ξ 2 

2 
−λ

( 
(1 − p) η2 

η2 + iξ
+ 

pη1 

η1 − iξ
−1 

) ⎞ ⎠ 
p 0.3 

λ 3 

σ 0.1 

η1 40 

η2 12 

VG (1 − iνξθ + νσ 2 ξ 2 / 2) −t/ν θ 1 / 9 

σ
√ 

3 / 9 

ν 0.25 
does indeed have this rate of convergence, it achieves approxi-

mately O (1/ N ) with the NIG and VG processes. Therefore, if we

wished to decrease the error of the discrete approximation so that

it is significantly (i.e. ten times) less than the continuous case

then we would have to increase the maximum number of moni-

toring dates in Tables 4 and 5 by 100 times for the NIG and VG

processes and by 200 2 times for the Kou process. We can see

from Figs. 10 and 11 that at M = 2 17 the discrete methods with

these numbers of dates have an error which is worse than the re-

quired accuracy of ten times better than the continuous method.

Thus the only possibility would be to also increase M , and by ex-

tension the CPU time of the discrete monitoring method, caus-

ing its computational cost to be greater than that for continuous

monitoring. 

5. Conclusions 

We showed that the numerical method for calculating the

discretely monitored Spitzer identities described by Fusai et al.

(2016) can be modified for continuous monitoring by using the

Fourier–Laplace domain instead of the Fourier- z domain. We im-

plemented this with the inverse Laplace transform by Abate and

Whitt (1992a, 1995) which achieves an accuracy of approximately

10 −11 , sufficient for our chosen application of pricing barrier op-

tions. We presented results showing that the conversion from dis-

crete to continuous monitoring means that exponential conver-

gence is no longer achieved, but instead the error convergence be-

comes sub-polynomial due to the performance of the Wiener–Hopf

factorisation. By examining the effect of truncating the sinc-based

discrete Hilbert transform, we were able to provide an error bound

which is well matched to the observed accuracy of the pricing pro-

cedure for continuously monitored options. 
It is notable that previous papers have shown that the

iscretely monitored case achieves exponential convergence

 Fusai et al., 2016; Phelan et al., 2018 ), but the continuous case de-

cribed here does not. However, our numerical results show that,

s the number of monitoring dates increases and �t → 0, the error

onvergence for the discretely monitored case degrades and ap-

roaches that of the continuously monitored case. Thus, the per-

ormance of the technique for continuously monitored barriers is

onsistent with previous results, being a limit of the performance

f the discretely monitored case. 

Furthermore we have compared the error vs. computational

ime of the continuously monitored scheme with that of an ap-

roximate solution generated by the discretely monitored scheme

ith a high number of monitoring dates. We show that, for higher

rrors, the discrete scheme may produce a rapidly calculated ap-

roximation to the continuously monitored scheme, but when

ower errors are required the continuously monitored scheme must

e used. 
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ppendix A. 

Table 6 contains all the parameters of the numerical experi-

ents presented in Section 4 . 
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