The purpose of this theoretical paper is to describe the development of a new technology for the automated analysis and design definition of Ultrasound (US) system User Interfaces (UI) and US transducers. US examination is a real-time multi-factor approach, which involves the whole sonographer’s body; its automated evaluation, analysis and design must take into account many different factors and aspects which need to be evaluated and implemented. The proposed technology, based on Digital Human Modeling (DHM) systems, would get input from multi- factor technologies such as Motion Analysis, Eye Tracking, Superficial Electromyography, Stereo Imaging and also physical information such as temperature, ECG, respiration activity, etc., applied to different US users for different clinical applications and protocols. The utilization of DHM to manage and analyze these diverse requirements would drive the automated optimization of system design, in terms of ergonomics and workflow.

Digital Human Models for Automated Ultrasound User Interface Design

Andreoni, Giuseppe;Mazzola, Marco;
2016-01-01

Abstract

The purpose of this theoretical paper is to describe the development of a new technology for the automated analysis and design definition of Ultrasound (US) system User Interfaces (UI) and US transducers. US examination is a real-time multi-factor approach, which involves the whole sonographer’s body; its automated evaluation, analysis and design must take into account many different factors and aspects which need to be evaluated and implemented. The proposed technology, based on Digital Human Modeling (DHM) systems, would get input from multi- factor technologies such as Motion Analysis, Eye Tracking, Superficial Electromyography, Stereo Imaging and also physical information such as temperature, ECG, respiration activity, etc., applied to different US users for different clinical applications and protocols. The utilization of DHM to manage and analyze these diverse requirements would drive the automated optimization of system design, in terms of ergonomics and workflow.
2016
Proceedings of the Human Factors and Ergonomics Society 2016 Annual Meeting
File in questo prodotto:
File Dimensione Formato  
1541931213601129.pdf

Accesso riservato

Descrizione: paper pubblicato
: Publisher’s version
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1051659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact