We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a PDE with respect to a system of N trial functions, can be recovered via a Petrov-Galerkin approach using m << N test functions. This recovery is guaranteed if the local a-coherence associated with the bilinear form and the selected trial and test bases fulfills suitable decay properties. The fundamental tool of this analysis is the restricted infsup property, i.e., a combination of the classical inf-sup condition and the well-known restricted isometry property of compressed sensing.
A theoretical study of compressed solving for advection-diffusion-reaction problems
Brugiapaglia, Simone;Micheletti, Stefano;Perotto, Simona
2018-01-01
Abstract
We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a PDE with respect to a system of N trial functions, can be recovered via a Petrov-Galerkin approach using m << N test functions. This recovery is guaranteed if the local a-coherence associated with the bilinear form and the selected trial and test bases fulfills suitable decay properties. The fundamental tool of this analysis is the restricted infsup property, i.e., a combination of the classical inf-sup condition and the well-known restricted isometry property of compressed sensing.File | Dimensione | Formato | |
---|---|---|---|
11311-1051439 Micheletti.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.