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A THEORETICAL STUDY OF COMPRESSED SOLVING
FOR ADVECTION-DIFFUSION-REACTION PROBLEMS

SIMONE BRUGIAPAGLIA, FABIO NOBILE, STEFANO MICHELETTI,
AND SIMONA PEROTTO

Abstract. We present a theoretical analysis of the CORSING (COmpRessed
SolvING) method for the numerical approximation of partial differential equa-
tions based on compressed sensing. In particular, we show that the best s-term
approximation of the weak solution of a PDE with respect to a system of N
trial functions, can be recovered via a Petrov-Galerkin approach using m� N
test functions. This recovery is guaranteed if the local a-coherence associated
with the bilinear form and the selected trial and test bases fulfills suitable
decay properties. The fundamental tool of this analysis is the restricted inf-
sup property, i.e., a combination of the classical inf-sup condition and the
well-known restricted isometry property of compressed sensing.

1. Introduction

Compressed Sensing (CS) is an extremely powerful tool of signal processing em-
ployed to recover a sparse signal using far fewer measurements than those required
by the Nyquist-Shannon sampling theorem. In particular, expanding the signal
with respect to a basis of N vectors, it is possible to recover the best s-term ap-
proximation to the signal, with s� N , by means of m random measurements, with
s < m� N [23, 12, 27].

In [11], we introduced an application of CS to the numerical approximation of
Partial Differential Equations (PDEs). For this purpose, we rely on an analogy
between the sampling process of a signal and the evaluation of the bilinear form
associated with a Petrov-Galerkin discretization ([6, 25, 37]) of the PDE against
randomly chosen test functions. We named the resulting numerical method CORS-
ING, acronym for COmpRessed SolvING.

Comparison with other techniques. The CORSING method aims at computing the
best s-term approximation to the solution to a PDE. Therefore, it can be classified
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2 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

among nonlinear approximation methods ([22, 46]) for PDEs. Although the frame-
work for CORSING is very general and can accommodate many different choices of
trial and test spaces, when considering hierarchical piecewise polynomials over an
initial coarse triangulation as trial basis functions, a possible competitor approach
is the Adaptive Finite Element Method (AFEM) (see, e.g., [33] and the references
therein). AFEM and CORSING are, however, thoroughly different: in AFEM, the
solution is iteratively computed according to the loop

SOLVE → ESTIMATE → MARK → REFINE,

and exploiting suitable a posteriori error estimators. On the contrary, with CORS-
ING we employ a reduced Petrov-Galerkin discretization, using a fixed trial space of
dimensionN (which corresponds ideally to a very fine uniform refinement, expressed
in a hierarchical basis) and performing a fixed number of random measurements in
the test space. In particular:

(1) the trial space is not iteratively enlarged, but fixed initially;
(2) the measurements in the test space are performed non-adaptively;
(3) no a posteriori error estimators/indicators are needed.

The CORSING procedure then recovers an s-sparse solution (with s � N), which
can be compared with the AFEM solution on the same ground. We consider (1) as
a possible drawback of CORSING, whereas (2) and (3) are upsides. In principle (1)
requires a higher computational cost in the recovery phase, whereas (2) allows for
full parallelization and (3) significantly reduces the implementation complexity.

From a different perspective, CORSING can be considered as a variant of the
infinite-dimensional CS, where CS is applied to infinite-dimensional Hilbert spaces
[3, 4]. This is achieved by subsampling a given isometry of the Hilbert space,
usually associated with an inner product and a change of basis (e.g., from a wavelet
basis to the Fourier basis). The main idea behind CORSING is different, since it
deals with the bilinear form arising from the weak formulation, that can be even
nonsymmetric. Nevertheless, we think that the theory developed in [3, 4] could
play a significant role for a deeper understanding of the CORSING technique and
this will be a subject of future investigation.

The present work and the proposed theoretical analysis have relations with the
techniques presented in [40, 41, 1, 2], where polynomial approximation and function
interpolation are addressed, by employing principles from CS, such as (weighted)
`1-minimization.

Finally, it is worth mentioning that CS has already been used in combination
with PDEs, however in the different context of approximating stochastic/parametric
PDEs, of particular interest in Uncertainty Quantification [24, 50, 45, 35, 7, 39].
The goal is to approximate some statistical information of the random solution to
the PDE through CS-based sampling strategies in the space of parameters.

Main contributions of the paper. The goal of this paper is to set up a theoretical
analysis of CORSING, providing sufficient conditions for convergence, and formaliz-
ing the empirical recipes given in [11]. With this aim, we introduce a novel variant
of the classical inf-sup condition [9], where the infimum is considered among the
sparse elements of the trial space and the supremum over a small test space. We
refer to this condition as Restricted Inf-Sup Property (RISP), since it combines the
inf-sup condition and the Restricted Isometry Property (RIP), a well-known tool
in the CS literature. Another important tool of the analysis is the concept of local
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a-coherence, a generalization of the local coherence to bilinear forms on Hilbert
spaces. In particular, we have been inspired by [28], where an optimal recovery
result for CS, with non-uniform random subsampling based on the local coherence,
is proved for the Haar and Fourier discrete bases in dimension one and two. In this
theoretical analysis, we will assume the test functions to be selected independently.
This is required in order to apply Chernoff’s bounds for the sum of random matrices
in Theorem 3.8 (see also Remark 2.4).

The main results of the paper can be thus summarized. First, we prove sufficient
conditions for the RISP, depending on suitable hypotheses on the local a-coherence.
Then, recovery error estimates for the CORSING algorithm are provided. In partic-
ular, in Theorem 3.8 we show that a sufficient condition for the RISP to hold with
high probability in a given s-sparse set is that m and s be linearly dependent, up
to logarithmic factors. On the contrary, at the moment we are only able to prove
(Theorem 3.10) a uniform RISP (i.e., a RISP holding in all possible s-sparse sets)
assuming a quadratic dependence between m and s, although we conjecture that,
as in CS, the dependence on s should be linear. Exploiting these theorems, we
prove a recovery result in expectation (Theorem 3.15) and two in probability (The-
orem 3.16 and Theorem 3.18). In particular, we check the hypotheses on the local
a-coherence in the case of a one-dimensional advection-diffusion-reaction equation
employing the hierarchical multiscale basis in [51, 19] and the Fourier sine basis.

Outline of the paper. In Section 2, we formally introduce the CORSING, defining
all the input/output variables involved in the algorithm. The theoretical analysis
based on the RISP is presented in Section 3, and an application of the theory to
a one-dimensional advection-diffusion-reaction equation is discussed in Section 4.
In Section 5, we provide some numerical results, and we draw some conclusions in
Section 6.

2. CORSING

In this section, after setting up the notation, we describe the COmpRessed Solv-
ING procedure, in short, CORSING, first introduced in [11].

2.1. Notation. Let N := {1, 2, 3, . . .} be the set of positive natural numbers, N0 :=
N ∪ {0}. Consider two separable Hilbert spaces over the field R,

U := span{ψj}j∈N and V := span{ϕq}q∈N,

generated by the bases {ψj}j∈N and {ϕq}q∈N, respectively, and equipped with the
inner products (·, ·)U and (·, ·)V , where the closures are made with respect to the
norms ‖ · ‖U and ‖ · ‖V induced by the corresponding inner products. Given two
positive integers N and M , we define the finite dimensional truncations of U and
V , which represent the trial and test space, respectively, as

UN := span{ψj}j∈[N ] and VM := span{ϕq}q∈[M ],

where [k] := {1, . . . , k} for every k ∈ N. In particular, [∞] = N. We denote the
span of the basis functions relative to a given subset of indices S ⊆ [N ] as

UNS := span{ψj}j∈S .

Given a positive integer s ≤ N , we also define the set UNs of s-sparse functions of
UN with respect to the basis {ψj}j∈[N ] as the set of all functions that are linear
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4 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

combinations of at most s basis functions, namely

UNs :=
⋃

S⊆[N ]; |S|=s

UNS .

We stress that UNs is not a vector space. Indeed, the sum of two s-sparse elements
is in general 2s-sparse. The sets VMT and VMm are defined analogously, for every
T ⊆ [M ] and m ≤M .

We denote by U∗ and V ∗ the dual spaces of U and V , respectively.
The bases {ψj}j∈N and {ϕq}q∈N are assumed to be Riesz bases (see, e.g., [16]).

In particular, we require the existence of two constants 0 < cψ ≤ Cψ such that

(1) cψ‖u‖22 ≤
∥∥∥∥∑
j∈N

ujψj

∥∥∥∥2

U

≤ Cψ‖u‖22, ∀u ∈ `2.

A relation analogous to (1) is assumed to hold for {ϕq}q∈N, with constants 0 <
cϕ ≤ Cϕ.

This assumption allows us to introduce the reconstruction and decomposition
operators associated with a basis, which allow us to switch between functions and
their corresponding coefficients in the basis expansion.

Definition 2.1. The reconstruction operator Ψ : `2 → U related to the basis
{ψj}j∈N of U associates with a sequence u = (uj)j∈N ∈ `2 the linear combination

u = Ψu :=

∞∑
j=1

ujψj .

The decomposition operator Ψ∗ : U → `2 applied to a given function u ∈ U is
defined component-wise as

(Ψ∗u)k := (u, ψ∗k)U , ∀k ∈ N,
where {ψ∗k}k∈N is the basis biorthogonal to {ψj}j∈N, namely, (ψj , ψ

∗
k)U = δjk,

∀j, k ∈ N.

The reconstruction operator Φ and the decomposition operator Φ∗ associated
with the basis {ϕq}q∈N of V are defined analogously.

Remark 2.2. We observe that ΨΨ∗ = IdU and Ψ∗Ψ = Id`2 .

2.2. The general reference problem. Consider the following problem

(2) find u ∈ U : a(u, v) = F(v), ∀v ∈ V,
where a : U ×V → R is a bilinear form and F ∈ V ∗. We assume a(·, ·) to fulfill the
following three conditions

∃α > 0 : inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V
≥ α,(3)

∃β > 0 : sup
u∈U

sup
v∈V

|a(u, v)|
‖u‖U‖v‖V

≤ β,(4)

sup
u∈U

a(u, v) > 0, ∀v ∈ V \ {0}.

These assumptions imply the existence and uniqueness of the solution to (2), thanks
to a generalization of the Lax-Milgram lemma due to Nečas [32], [37, Theorem
5.1.2].

Aug 3 2016 02:45:43 EDT
Version 2 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 5

To simplify the notation, when an infimum or a supremum of a fraction f(x)/g(x)
over a given set X is considered, the zeros of g(x) are understood to be removed
from X.

Our goal is to approximate the solution to (2), by merging the classical Petrov-
Galerkin formulation (sometimes also called non-standard Galerkin method) [6, 37,
25] with CS techniques [23, 12].

2.3. Main hypotheses. We will use three assumptions throughout the article.

Hypothesis 1 (Riesz bases). The trial basis {ψj}j∈N and the test basis {ϕq}q∈N
are Riesz bases, i.e., they fulfill relation (1) with constants 0 < cψ ≤ Cψ and
0 < cϕ ≤ Cϕ, respectively.

Hypothesis 1 is needed for the operators Ψ, Ψ∗, Φ, and Φ∗ to be well defined (see
Definition 2.1), but this requirement can be relaxed in the case of the trial basis.
Indeed, throughout the article, we just consider the restriction of Ψ from `2 to RN ,
namely the operator ΨN := Ψ|RN : RN → UN , and the restriction of Ψ∗ from U to
UN , namely ΨN,∗ := Ψ∗|UN : UN → RN . A sufficient condition for the existence of
operators ΨN and ΨN,∗ is that there exist two constants 0 < cNψ ≤ CNψ such that
relation (1) holds for every u ∈ RN (in place of u ∈ `2). Within this more general
setting, the constants are allowed to degenerate, i.e., we may have that cNψ → 0

and CNψ → +∞ as N → +∞. However, for easiness of presentation, we assume
Hypothesis 1 to hold also for the trial basis.

We generalize the notion of local coherence (see, e.g., [28]) to bilinear forms
defined over Hilbert spaces.

Definition 2.3 (Local a-coherence µN ). Given N ∈ N ∪ {∞}, the real-valued
sequence µN defined as

µNq := sup
j∈[N ]

|a(ψj , ϕq)|2, ∀q ∈ N,

is called local a-coherence of {ψj}j∈[N ] with respect to {ϕq}q∈N.

Notice that µN is a bounded sequence, with a uniform bound with respect to N .
Indeed, exploiting the continuity (4) of the bilinear form a(·, ·) and Hypothesis 1,
we have

µNq = sup
j∈[N ]

|a(ψj , ϕq)|2 ≤ β2 sup
j∈[N ]

‖ψj‖2U · ‖ϕq‖2V ≤ β2CψCϕ, ∀q,N ∈ N.

The second hypothesis concerns the local a-coherence.

Hypothesis 2 (Summability of µN ). The local a-coherence of {ψj}j∈[N ] with re-
spect to {ϕq}q∈N fulfills the summability condition

‖µN‖1 < +∞,

or, equivalently, µN ∈ `1.

Notice that Hypothesis 2 does not hinge on the ordering considered for the
elements of the truncated trial basis {ψj}j∈[N ].

The last hypothesis concerns an explicit upper bound to the local a-coherence.
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6 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

Algorithm 2.1

PROCEDURE û = CORSING (N , s, νN , γ̂, Ĉ, γ, C)
1. Definition of M and m
> M ← Ĉsγ̂N ;
> m← Csγ‖νN,M‖1 log(N/s);
2. Test selection
> p← νN,M/‖νN,M‖1;
> Draw τ1, . . . , τm independently at random from [M ] according to the

probability p;
3. Assembly
> Build A, f and D, defined in (6) and (7), respectively;
4. Recovery
> Find an approximate solution û to arg min

v∈RN
‖D(Av − f)‖22, s.t. ‖v‖0 ≤ s;

> û← Ψû.

Hypothesis 3 (Upper bound νN ). For every N ∈ N, we assume to have a com-
putable componentwise upper bound νN to the local a-coherence µN , i.e., a real-
valued sequence such that

µNq ≤ νNq , ∀q ∈ N.

For every M ∈ N, we define the vector νN,M ∈ RM as the restriction of νN to the
first M components. Moreover, we require that

• the vector νN,M/‖νN,M‖1 is efficiently computable for every N,M ∈ N;
• there exists a real bivariate polynomial P such that

‖νN,M‖1 . P (logN, logM).

The upper bound νN need not be sharp.
As usual, with notation x ∼ y, x . y or x & y, it is understood that there exists

a constant C > 0 not depending on x and y, such that x = Cy, x ≤ Cy or x ≥ Cy,
respectively.

2.4. The CORSING procedure. The CORSING procedure is summarized in Al-
gorithm 2.1. Let us now describe in more detail the input/output variables and the
main steps of the method.

INPUT.

• N : dimension of the trial space;
• s� N : number of trial coefficients to recover;
• upper bound νN in Hypothesis 3 and four positive constants γ̂, Ĉ, γ, and
C, used to select the dimension M of the test space and the m tests to
perform.

OUTPUT.

• û ∈ UNs : approximate s-sparse solution to (2).
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A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 7

1. Definition of M and m. The test space dimensionM and the number m of tests
to perform are chosen as functions of N and s as

M = Ĉsγ̂N, m = Csγ‖νN,M‖1 log(N/s).

In Section 3, we prove the existence of suitable values for the constants γ̂, Ĉ, γ, and
C that ensure the CORSING algorithm to recover the best s-term approximation to
u in expectation and in probability. In Section 4, we perform a sensitivity analysis
on the constants Ĉ and C for some specific differential problems and with γ = 1, 2.
Numerical evidence shows that γ = 1 is a valid choice, but proving this from a
theoretical viewpoint still remains an open problem. On the contrary, the value of
γ̂ seems to depend on the trial and test bases considered (see Section 4).

2. Test selection. In order to formalize the test selection procedure, we introduce a
probability space (Ω, E ,P) and consider τ1, . . . , τm as i.i.d. discrete random variables
taking values in [M ], namely

τi : Ω→ [M ], ∀i ∈ [m].

Moreover, given a vector p = (pq)q∈[M ] ∈ [0, 1]M such that ‖p‖1 = 1, the probabil-
ity law is defined as

P{τi = q} = pq, ∀q ∈ [M ].

Throughout the paper, the vector p will be assumed to be of the form

(5) p :=
νN,M

‖νN,M‖1
,

where the values for νN,M are known from Hypothesis 3.

3. Assembly. In this phase, we build the stiffness matrix A ∈ Rm×N and the load
vector f ∈ Rm associated with the Petrov-Galerkin discretization of (2), defined as

(6) Aij := a(ψj , ϕτi), fi := F(ϕτi), ∀j ∈ [N ], ∀i ∈ [m].

Moreover, the matrix D ∈ Rm×m is a diagonal preconditioner, depending on the
vector p as

(7) Dik :=
δik√
mpτi

, ∀i ∈ [m].

4. Recovery. The vector of trial coefficients û is an approximate solution to

(8) arg min
v∈RN

‖D(Av − f)‖22, s.t. ‖v‖0 ≤ s,

where ‖u‖0 = |{j : uj 6= 0}| is the so called `0-norm. Consequently, the CORSING
solution is defined as û := Ψû. An equivalent functional formulation of (8) is

(9) arg min
v∈UNs

m∑
i=1

1

mpτi
(a(v, ϕτi)−F(ϕτi))

2.

The procedure defined by (8) (or, equivalently, (9)) has been proved to be gen-
erally NP-hard, [30], but fortunately, there are several ways to efficiently and accu-
rately approximate its solutions under particular circumstances, e.g., when the RIP
holds. These strategies can be divided in two main families: convex relaxation tech-
niques, such as the well known `1-minimization, also known as Basis Pursuit (BP)
[13], and greedy algorithms [47, 31]. In this paper, we focus on greedy techniques
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8 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

and, in particular, we employ the Orthogonal Matching Pursuit (OMP) algorithm
[29, 34]. For recent results concerning its accuracy, we refer to [52, 17].

Using OMP, we can easily control the parameter s, i.e., the sparsity of the com-
pressed solution û, by employing a stopping criterion based on sparsity. The time
complexity of the OMP algorithm is easily estimated, namely O(smN) for basic
implementations. All the numerical experiments made in this work are performed
using the omp-box MatlabR© package, version 10 - see [44, 43]. For a comparison
between OMP and `1-minimization for CORSING, we refer to [11].

A valuable alternative to OMP (not addressed here) is the Hard Thresholding
Pursuit (HTP), introduced in [26]. HTP is a greedy strategy very similar to OMP,
which easily allows for a control on the sparsity level, s, and has been shown to be
competitive with OMP [8].

Remark 2.4. The CORSING procedure described in Algorithm 2.1 is almost identical
to the R-CORSING method discussed in [11]. There is only one difference. Here, we
assume the independence of the random variables τ1, . . . , τm (hence allowing repeti-
tions). In [11] the same random variables are selected through successive drawings
from an urn without replacement (see [11, Algorithm 4.1]), in order to avoid repeti-
tions. The hypothesis of independence is needed to simplify the theoretical analysis
of the next section and to apply Chernoff’s bounds.

3. Theoretical analysis

3.1. Preliminary results. The main statistical tools employed in this paper are
Chernoff’s bounds for matrices. They were introduced by H. Chernoff during the
early 50’s in the scalar form [14], and generalized to the matrix setting by R.
Ahlswede and A. Winter in 2003 [5]. These bounds have been recently refined in
2012 by J. Tropp in [48].

First, we present the main result employed in our analysis. The proof of the
following theorem can be found in [48, Corollary 5.2].

Theorem 3.1 (Matrix Chernoff’s bounds). Consider a finite sequence of i.i.d.
random, symmetric s× s real matrices X1, . . . ,Xm such that

0 ≤ λmin(Xi) and λmax(Xi) ≤ R almost surely, ∀i ∈ [m].

Define X := 1
m

m∑
i=1

Xi, Emin := λmin(E[Xi]) and Emax := λmax(E[Xi]). Then,

P{λmin(X) ≤ (1− δ)Emin} ≤ s exp

(
−mρδEmin

R

)
, ∀δ ∈ [0, 1],(10)

P{λmax(X) ≥ (1 + δ)Emax} ≤ s exp

(
−mρ̃δEmax

R

)
, ∀δ ≥ 0,

with

(11) ρδ := (1− δ) log(1− δ) + δ, ρ̃δ := (1 + δ) log(1 + δ)− δ.

�

Notice that both constants ρδ, ρ̃δ ∼ δ2 when δ → 0.
We conclude this section by recalling a result that will be repeatedly used in the

next proofs.
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Lemma 3.2. If A,B ∈ Rd×d are symmetric and B is also positive definite, it holds

λmin(B−
1
2AB−

1
2 ) = inf

u∈Rd
uᵀAu

uᵀBu
,(12)

λmax(B−
1
2AB−

1
2 ) = sup

u∈Rd

uᵀAu

uᵀBu
.(13)

3.2. Non-uniform restricted inf-sup property. In this section, we deal with
the core of our paper, namely an analysis of the CORSING algorithm.

We denote the space of vectors of RN supported in S ⊆ [N ] as RNS , namely

RNS := {u ∈ RN : uj = 0, ∀j /∈ S}.

Moreover, we introduce some further notation.

Definition 3.3 (Matrices K, KS and AS). We define the matrix K ∈ RN×N as

Kjk := (ψj , ψk)U .

and its restriction KS ∈ Rs×s to S := {σ1, . . . , σs} ⊆ [N ] as

(KS)jk := (ψσj , ψσk)U .

Moreover, we denote by AS ∈ Rm×s the submatrix of A consisting only of the
columns with indices in S.

We observe that K is symmetric and positive definite (s.p.d.) and fulfills

(14) uᵀKu = ‖Ψu‖2U , ∀u ∈ RN ,

where the reconstruction operator in (14) is implicitly restricted from `2 to RN
(equivalently, the vector u is extended to `2 by adding zeros for j > N). Morever,
when basis {ψj}j∈N is orthonormal, the matrix K is the identity. The matrix KS
is also s.p.d. and it satisfies the relation

uᵀ
SKSuS = uᵀKu, ∀u ∈ RNS ,

where uS ∈ Rs is the restriction of u to S, namely (uS)j = uσj , for every j ∈ [s].
In this section, we fix a subset S := {σ1, . . . , σs} ⊆ [N ] of cardinality s.

We introduce the Gram matrix G∞ relative to the restriction of a(·, ·) to UNS ×V .

Definition 3.4 (Matrix G∞). Define the matrix G∞ ∈ Rs×s such that

G∞jk :=

∞∑
q=1

a(ψσj , ϕq)a(ψσk , ϕq), ∀j, k ∈ [s],

where the series are well defined thanks to Hypothesis 2 and |G∞jk| ≤ ‖µN‖1, for
every j, k ∈ [s].

The first lemma provides a relation between the inf-sup constant α associated
with the bilinear form a(·, ·) and the Gram matrix G∞.

Lemma 3.5. Suppose that the bilinear form a(·, ·) fulfills the inf-sup property (3).
Then, it holds

λmin(K
− 1

2

S G∞K
− 1

2

S ) ≥ cϕα2.
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10 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

Proof. Recalling property (3), relation (14), and the Riesz basis property for the
test functions, we obtain

α ≤ inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V
≤ inf
u∈UNS

sup
v∈V

a(u, v)

‖u‖U‖v‖V

≤ 1
√
cϕ

inf
u∈RNS

sup
v∈`2

1

‖K 1
2u‖2‖v‖2

∞∑
q=1

a(Ψu, ϕq)vq

=
1
√
cϕ

inf
u∈RNS

1

‖K 1
2u‖2

[ ∞∑
q=1

a(Ψu, ϕq)
2

] 1
2

.

The last equality can be deduced by applying the definition of operator norm

sup
v∈`2

1

‖v‖2

∞∑
q=1

a(Ψu, ϕq)vq = ‖(a(Ψu, ϕq))q∈N‖(`2)∗

and by identifying (`2)∗ with `2. Now, since all the quantities involved in the chain
of inequalities are positive, we can square the terms, obtaining

cϕα
2 ≤ inf

u∈RNS

1

uᵀKu

∞∑
q=1

a(Ψu, ϕq)
2 = inf

u∈Rs
1

uᵀKSu

∞∑
q=1

[ s∑
j=1

uja(ψσj , ϕq)

]2

= inf
u∈Rs

1

uᵀKSu

∞∑
q=1

s∑
j=1

s∑
k=1

ujuka(ψσj , ϕq)a(ψσk , ϕq)

= inf
u∈Rs

1

uᵀKSu

s∑
j=1

s∑
k=1

ujuk

∞∑
q=1

a(ψσj , ϕq)a(ψσk , ϕq)

= inf
u∈Rs

uᵀG∞u

uᵀKSu
= λmin(K

− 1
2

S G∞K
− 1

2

S ),

where we employed Hypothesis 2 and relation (12). �

The second lemma provides a recipe on how to choose the truncation level M
on the tests, after selecting N and s.

Lemma 3.6. Under the same hypotheses as in Lemma 3.5, we fix a real number
δ̂ ∈ (0, 1). Then, if M ∈ N satisfies the truncation condition

(15) s
∑
q>M

µNq ≤ cϕα2λmin(KS)δ̂,

the following inequality holds

λmin(K
− 1

2

S GMK
− 1

2

S ) ≥ (1− δ̂)cϕα2,

where GM ∈ Rs×s is the truncated version of G∞, namely

GMjk :=

M∑
q=1

a(ψσj , ϕq)a(ψσk , ϕq).

Proof. First, consider the splitting G∞ = GM + TM , where TM corresponds to
the tail of the series identifying G∞,

TMjk =
∑
q>M

a(ψσj , ϕq)a(ψσk , ϕq).
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A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 11

Now, notice that

λmin(K
− 1

2

S GMK
− 1

2

S ) = λmin(K
− 1

2

S (G∞ −TM )K
− 1

2

S )

≥ λmin(K
− 1

2

S G∞K
− 1

2

S )− λmax(K
− 1

2

S TMK
− 1

2

S )

The inequality can be proved using Lemma 3.2. Applying Lemma 3.5, we obtain

λmin(K
− 1

2

S GMK
− 1

2

S ) ≥ cϕα2(1− λmax(K
− 1

2

S TMK
− 1

2

S )/(cϕα
2)).

Thus, the thesis is proved if we bound the maximum eigenvalue of the tail as follows

λmax(K
− 1

2

S TMK
− 1

2

S ) ≤ δ̂cϕα2.

For this purpose, employing relations (13) and (12), Hypothesis 2, and condition
(15), we compute

λmax(K
− 1

2

S TMK
− 1

2

S ) = sup
u∈Rs

uᵀTMu

uᵀKSu

= sup
u∈Rs

1

uᵀKSu

s∑
j=1

s∑
k=1

ujuk
∑
q>M

a(ψσj , ϕq)a(ψσk , ϕq)

= sup
u∈Rs

1

uᵀKSu

∑
q>M

[ s∑
j=1

uja(ψσj , ϕq)

]2

≤ sup
u∈Rs

uᵀu

uᵀKSu
s
∑
q>M

µNq =
1

λmin(KS)
s
∑
q>M

µNq .

�

Remark 3.7. Truncation condition (15) depends on the ordering of the test functions
{ϕq}q∈N. This dependence can be removed by considering a set T of test indices
defined as

(16) T := arg max
T̃ ⊆N, |T̃ |=M

∑
q∈T̃

µNq .

Then, condition (15) is replaced by

s
∑
q∈T c

µNq ≤ cϕα2λmin(KS)δ̂.

Optimization problem (16) could be very difficult (or even impossible) to solve in
practice, but it can drive the choice of the ordering in the multi-dimensional case.

This lemma provides a sufficient condition on the truncation parameter M that
ensures an arbitrarily small decrease of the inf-sup constant α by a factor [cϕ(1 −
δ̂)]

1
2 . Moreover, a value M that fulfills (15) always exists thanks to Hypothesis 2.

We notice that condition (15) becomes more and more restrictive as δ̂ → 0. In
particular, the choice δ̂ = 0 is not allowed, since condition (15) would hold true
only in the very special case when µN has a finite number of nonzero elements.
Moreover, condition (15) becomes more and more suboptimal as δ̂ → 1, since the
minimum eigenvalue of K−1/2

S GMK
−1/2
S is always nonnegative. The choice δ̂ = 1

has been excluded because, in the following developments, the minimum eigenvalue
is not allowed to vanish (see Theorems 3.8 and 3.10).
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12 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

Relation (15) can be interpreted as a sufficient condition for the space VM to
be δ-proximal for UNS , with constant δ = δ̂ 1/2 (see [20]). Furthermore, condition
(15) is related to the balancing property presented in [4], providing a criterion to
control the distortion with respect to the `∞-norm associated with the truncation
of an infinite-dimensional isometry of `2 to a finite-dimensional map from RN to
RM .

Now, we prove the main result of this section.

Theorem 3.8 (Non-uniform RISP). Let the truncation condition in Lemma 3.6
hold. Then, for every 0 < ε < 1 and δ ∈ (0, 1), provided that

m ≥ C̃S s‖νN,M‖1 log(s/ε),

where C̃S := [ρδ(1 − δ̂)cϕα2λmin(KS)]−1 and ρδ is defined according to (11), the
following non-uniform RISP holds with probability greater than or equal to 1− ε

(17) inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2

Su‖2‖v‖2
> α̃ > 0,

where α̃ := [(1− δ̂)(1− δ)cϕ]
1
2α and D is defined in (7).

Proof. The proof is organized as follows. First, we show that the inf-sup in (17) can
be interpreted as the square root of the minimum eigenvalue of the sample mean
of a sequence of certain i.i.d. random matrices Xτ1 , . . . ,Xτm . Then, we compute
the expectation of Xτi and show that the maximum eigenvalue of Xτi is uniformly
bounded. Finally, we apply matrix Chernoff’s bound (10).

Let us discuss each step of the proof in detail. First, we compute

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2

Su‖2‖v‖2
= inf

u∈Rs
1

‖K
1
2

Su‖2
sup
v∈Rm

vᵀDASu

‖v‖2

= inf
u∈Rs

‖DASu‖2
‖K

1
2

Su‖2
= [λmin(K

− 1
2

S Aᵀ
SD

2ASK
− 1

2

S )]
1
2 .

The second equality hinges on the definition of operator norm combined with the
identification of (Rm)∗ with Rm while the third one exploits (12).

Relying on the following relation,

(Aᵀ
SD

2AS)jk =
1

m

m∑
i=1

1

pτi
a(ψσj , ϕτi)a(ψσk , ϕτi)

we define the matrices Hτi ∈ Rs×s with Hτi
jk := 1

pτi
a(ψσj , ϕτi)a(ψσk , ϕτi) and

Xτi := K
− 1

2

S HτiK
− 1

2

S ,

so that

X :=
1

m

m∑
i=1

Xτi = K
− 1

2

S Aᵀ
SD

2ASK
− 1

2

S .

Thus, it holds

(18) inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2

Su‖2‖v‖2
= [λmin(X)]

1
2 .

Aug 3 2016 02:45:43 EDT
Version 2 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 13

With a view to Chernoff’s bounds, we estimate E[Xτi ] and the corresponding
minimum eigenvalue. A direct computation yields

E[Hτi
jk] =

M∑
q=1

P{τi = q}Hq
jk =

M∑
q=1

pq
1

pq
a(ψσj , ϕq)a(ψσk , ϕq) = GMjk .

As a consequence, we have

E[Xτi ] = E[K
− 1

2

S HτiK
− 1

2

S ] = K
− 1

2

S E[Hτi ]K
− 1

2

S = K
− 1

2

S GMK
− 1

2

S ,

and, from Lemma 3.6

(19) λmin(E[Xτi ]) ≥ (1− δ̂)cϕα2.

Our aim is now to bound λmax(Xτi) from above. We have

λmax(Xτi) = sup
u∈Rs

uᵀHτiu

uᵀKSu
≤ sup

u∈Rs

uᵀu

uᵀKSu
sup
u∈Rs

uᵀHτiu

uᵀu

= [λmin(KS)]−1 sup
u∈Rs

1

uᵀu

s∑
j=1

s∑
k=1

ujuk
1

pτi
a(ψσj , ϕτi)a(ψσk , ϕτi)

= [λmin(KS)]−1 1

pτi
sup
u∈Rs

1

uᵀu

[ s∑
j=1

uja(ψσj , ϕτi)

]2

≤ [λmin(KS)]−1 ‖νN,M‖1
νNτi

s∑
j=1

a(ψσj , ϕτi)
2 ≤ [λmin(KS)]−1 s ‖νN,M‖1.(20)

The first line follows from (13). The last line exploits Cauchy-Schwarz inequality
combined with definition (5) of p, and Hypothesis 3.

Now, we compute the probability of failure of satisfying (17), i.e.,

P

{
inf

u∈Rs
sup
v∈Rm

vᵀDASu

‖K
1
2

Su‖2‖v‖2
≤ α̃

}
= P

{
λmin(X) ≤ (1− δ)(1− δ̂)cϕα2

}
≤ P{λmin(X) ≤ (1− δ)λmin(E[Xτi ])}

≤ s exp

(
−

mρδλmin(E[Xτi ])

s‖νN,M‖1[λmin(KS)]−1

)
≤ s exp

(
−

mρδ(1− δ̂)cϕα2

s‖νN,M‖1[λmin(KS)]−1

)
.(21)

The first equality relies on (18) and on the definition of α̃. The first inequality
in the second line hinges on (19), while the second inequality is the first matrix
Chernoff bound (10), where the uniform estimate (20) has been employed. The
final inequality follows from (19).

The thesis is finally proved on estimating that

s exp

(
−

mρδ(1− δ̂)cϕα2

s‖νN,M‖1[λmin(KS)]−1

)
≤ ε⇐⇒ m ≥ C̃S s‖νN,M‖1 log(s/ε),

with C̃S := [ρδ(1− δ̂)cϕα2λmin(KS)]−1.
�

Aug 3 2016 02:45:43 EDT
Version 2 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



14 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

The parameter δ controls the reduction of inf-sup constant due to the randomized
selection of the reduced test space (spanned by the functions ϕτ1 , . . . , ϕτm). In
particular, Theorem 3.8 provides a sufficient condition on m, such that the RISP
constant looses at most a portion (1 − δ)1/2 of the minimum eigenvalue of the
matrix K

−1/2
S GMK

−1/2
S (recall Lemma 3.6). When δ → 0, the lower bound on m

degenerates, since the constant C̃S grows with order δ
−2

. When δ → 1, the RISP
constant α̃ tends to vanish. In the limit case δ = 1, Theorem 3.8 gives a sufficient
condition for the RISP constant to be nonzero with high probability.

Remark 3.9. Due to the independence of τ1, . . . , τm, repetitions of the outcomes can
occur during the drawing selection. This does not seem to be very efficient, since
the matrix A has some repeated rows, which introduce redundant information. We
show how to get rid of the repeated indices, further compressing the CORSING
discretization. Among the indices τ1, . . . , τm, consider only the nonrepeated ones
τ̃1, . . . , τ̃m̃. Of course, m̃ ≤ m. Then, we define a modified version of the stiffness
matrix Ã and of the load vector f̃ as

Ãij := a(ϕτ̃i , ψj), f̃i := F(ϕτ̃i), ∀i ∈ [m̃], ∀j ∈ [N ].

Moreover, we slightly modify the preconditioner D̃ as

D̃ik := δik

√
ri

mpτ̃i
, ∀i, k ∈ [m̃],

where ri := |{k ∈ [m] : τk = τ̃i}| is the number of outcomes of τ̃i. It is not
difficult to verify that AᵀD2A = ÃᵀD̃2Ã, and thus the proof of Theorem 3.8 can
be replicated to prove an analogous RISP result for D̃Ã. This leads to a further
computational reduction considering the system D̃Ã = D̃f̃ , of dimension m̃×N .

3.3. Uniform restricted inf-sup property. We extend the results in the previ-
ous Section to the uniform case, i.e., we aim at proving the RISP over UNs , instead
of UNS , for a fixed subset S ⊆ [N ] with |S| = s. For this purpose, we use the
non-uniform Theorem 3.8 and a union bound.

First, we introduce the set ΣNs of s-sparse vectors of RN , namely

ΣNs := {x ∈ RN : ‖x‖0 ≤ s} ≡
⋃

S⊆[N ]; |S|=s

RNS .

The following theorem provides a sufficient condition for the uniform RISP to
hold.

Theorem 3.10 (Uniform RISP). Given δ̂ ∈ (0, 1), choose M ∈ N such that the
following truncation condition is fulfilled

s
∑
q>M

µNq ≤ cϕα2κsδ̂,

where

(22) κs := min
S⊆[N ]; |S|=s

λmin(KS).

Then, for every 0 < ε < 1 and δ ∈ (0, 1), provided

(23) m ≥ C̃s s‖νN,M‖1[s log(eN/s) + log(s/ε)],
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A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 15

with

(24) C̃s := [ρδ(1− δ̂)cϕα
2κs]

−1

and ρδ as in (11), the following uniform s-sparse RISP holds with probability greater
than or equal to 1− ε

inf
u∈ΣNs

sup
v∈Rm

vᵀDAu

‖K 1
2u‖2‖v‖2

> α̃ > 0,

where α̃ := [(1− δ̂)(1− δ)cϕ]
1
2α.

Proof. First, we define the event where the RISP holds non-uniformly over a single
subset S ⊆ [N ] with |S| = s:

ΩS :=

{
ω ∈ Ω : inf

u∈Rs
sup
v∈Rm

vᵀD(ω)AS(ω)u

‖K
1
2

Su‖2‖v‖2
> α̃

}
,

where the dependence of AS and D on ω has been highlighted. Analogously, we
define the event where the RISP holds uniformly

(25) Ωs :=

{
ω ∈ Ω : inf

u∈ΣNs

sup
v∈Rm

vᵀD(ω)A(ω)u

‖K 1
2u‖2‖v‖2

> α̃

}
.

In particular, the following relation holds

Ωs =
⋂

S⊆[N ]; |S|=s

ΩS ,

and, thanks to the subadditivity of P and De Morgan’s laws, we have

P(Ωcs) = P
((⋂

ΩS

)c)
= P

(⋃
ΩcS

)
≤

∑
S⊆[N ]; |S|=s

P(ΩcS).(26)

Now, the non-uniform inequality (21) and the definition (22) of κs, yield the fol-
lowing uniform upper bound

(27) P(ΩcS) ≤ s exp

(
−

mρδ(1− δ̂)cϕα2

s‖νN,M‖1[λmin(KS)]−1

)
≤ s exp

(
−
mρδ(1− δ̂)cϕα2

s‖νN,M‖1κ−1
s

)
.

Moreover, Stirling’s formula furnishes the following upper bound

(28) |{S ⊆ [N ] : |S| = s}| =
(
N

s

)
=

N !

s!(N − s)!
≤ Ns

s!
≤
(
eN

s

)s
.

Combining (26), (27) and (28), we finally obtain the uniform estimate

(29) P(Ωcs) ≤
(
eN

s

)s
s exp

(
−
mρδ(1− δ̂)cϕα2

s‖νN,M‖1κ−1
s

)
.

Simple algebraic manipulations show that the right hand-side of (29) is less than
or equal to ε if and only if relation (23) holds. �

We note that the sufficient condition (23) is, in general, too pessimistic. In-
deed, in the classical literature on CS, e.g., [23, 12], the optimal asymptotically
dependence of m on s is linear. Likely, this lack of optimality is due to the union
bound, that is a very rough estimate. We expect that it is possible to achieve the
optimal behavior by using more advanced techniques, such as those described in
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16 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

[27, Chapter 12] and [38] in the case of Bounded Orthonormal Systems. This will
be investigated in the future.
Remark 3.11. The quantity κs can be bounded from below by the lower Riesz
constant cψ. Indeed, for every S ⊆ [N ], it holds

λmin(KS) = min
u∈RNS

uᵀKu

uᵀu
≥ min

u∈RN
uᵀKu

uᵀu
= min

u∈RN
‖Ψu‖2U
‖u‖22

≥ cψ.

Moreover, recalling (24), we have

C̃s ≤ [ρδ(1− δ̂)α
2cϕcψ]−1.

Therefore, C̃s is uniformly bounded from above with respect to s. We also notice
that κs = 1 when {ψj}j∈N is an orthonormal basis.
3.4. Recovery error analysis. In this section, we deal with the analysis of the
recovery error associated with the CORSING procedure, computed with respect to
the trial norm ‖ · ‖U , i.e., the quantity ‖û−u‖U . Notice that this error is a random
variable, depending on the extracted indices τ1, . . . , τm. Our aim is to compare the
recovery error with the best s-term approximation error of the exact solution u in
UN , i.e., the quantity ‖us − u‖U , where
(30) us := arg min

w∈UNs
‖w − u‖U .

Due to the s-sparsity constraint in the recovery procedure (8), us is the best result
that CORSING can ideally provide.1

For this purpose, we show that the uniform 2s-sparse RISP implies a recovery
result, depending on a random preconditioned residual (Lemma 3.12), whose second
moment is controlled by the square of the best s-term approximation error (Lemma
3.13). Afterwards, in Theorem 3.15, we prove that the best s-term approximation
error dominates the first moment of the error associated with a truncated version
of the CORSING solution and, finally, we provide two recovery error estimates that
holds with high probability in Theorems 3.16 and 3.18.

In the analysis carried out here, the CORSING solution û is supposed to solve
the minimization problem (9) exactly. In particular, we are not taking into account
the additional approximation error introduced by the OMP algorithm (or by other
solvers that could be employed to approximate (9), such as `1-minimization).

In the following, a key quantity is the preconditioned random residual

(31) R(v) :=

[
1

m

m∑
i=1

1

pτi
[a(v, ϕτi)−F(ϕτi)]

2

] 1
2

, ∀v ∈ U.

Now, we prove the two lemmas.
Lemma 3.12. If the uniform 2s-sparse RISP

(32) inf
u∈ΣN2s

sup
v∈Rm

vᵀDAu

‖K 1
2u‖2‖v‖2

> α̃ > 0,

holds, then the CORSING procedure computes a solution û such that

‖û− us‖U <
2

α̃
R(us).

1The quantity in (30) is actually a minimum and not an infimum, since the function w 7→
‖w − u‖U is convex and UN

s is a finite union of linear subspaces.
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A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 17

Proof. Define û := Ψ∗û and us := Ψ∗us. Then, casting (25) in Ω2s, since û−us is
at most 2s-sparse, and thanks to the RISP property (32), we have

‖û− us‖U = ‖K 1
2 (û− us)‖2 <

1

α̃
sup
v∈Rm

vᵀDA(û− us)

‖v‖2
=

1

α̃
‖DA(û− us)‖2.

Moreover, the last norm can be bounded as

‖DA(û− us)‖22 =
1

m

m∑
i=1

1

pτi
a(û− us, ϕτi)2

=
1

m

m∑
i=1

1

pτi
[a(û, ϕτi)−F(ϕτi)− a(us, ϕτi) + F(ϕτi)]

2

≤ 2

m

m∑
i=1

1

pτi
{[a(û, ϕτi)−F(ϕτi)]

2 + [a(us, ϕτi)−F(ϕτi)]
2}

≤ 4

m

m∑
i=1

1

pτi
[a(us, ϕτi)−F(ϕτi)]

2 = 4R(us)2,

where the last inequality exploits the optimality of û. �

Lemma 3.13. The following upper bound holds

(33) E[R(us)2] ≤ Cϕβ2‖us − u‖2U ,

where β is the continuity constant of a(·, ·) defined in (4).

Proof. Thanks to (2), the residual (31) becomes

R(us)2 =
1

m

m∑
i=1

p−1
τi a(us − u, ϕτi)2,

Thus, in expectation, we obtain

(34) E[R(us)2] =
1

m

m∑
i=1

E[p−1
τi a(us − u, ϕτi)2].

Each term in the last summation can be bounded as

(35) E[p−1
τi a(us − u, ϕτi)2] =

M∑
q=1

p−1
q a(us − u, ϕq)2pq ≤

∞∑
q=1

a(us − u, ϕq)2.

Now, notice that

‖a(us − u, ·)‖V ∗ = sup
v∈V

|a(us − u, v)|
‖v‖V

≥ 1√
Cϕ

sup
v∈`2

|
∑∞
q=1 vqa(us − u, ϕq)|

‖v‖2

=

[
1

Cϕ

∞∑
q=1

a(us − u, ϕq)2

] 1
2

.

Plugging this equality and (35) in (34), and thanks to (4), we have

E[R(us)2] ≤ ‖a(us − u, ·)‖2V ∗ ≤ Cϕβ2‖us − u‖2U .

�
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18 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

If an upper bound of the form ‖u‖U ≤ K is known, a near-optimal recovery result
holds in expectation for a truncation of the CORSING solution. This truncation is
obtained through the operator TK : U → U defined as

(36) TKw :=

{
w if ‖w‖U ≤ K,
Kw/‖w‖U if ‖w‖U > K,

∀w ∈ U.

Using (2) and (3), a possible choice of K is ‖F‖V ∗/α.
Then, we have the following lemma whose proof is straightforward.

Lemma 3.14. TK is 1-Lipschitz, with respect to ‖ · ‖U , for every K > 0.

Employing an argument similar to that used in [18, 15], we show an upper bound
to the error associated with the truncated CORSING solution.

Theorem 3.15 (Error estimate in expectation). Let K > 0 be such that ‖u‖U ≤ K.
Given δ̂ ∈ (0, 1), choose M ∈ N such that the truncation condition

(37) 2s
∑
q>M

µNq ≤ cϕα2κ2sδ̂,

is fulfilled, and fix δ ∈ (0, 1).
Then, for every 0 < ε < 1, provided

(38) m ≥ 2 C̃2s s‖νN,M‖1[2s log(eN/(2s)) + log(2s/ε)],

with C̃2s defined analogously to (24) and α̃ = [(1 − δ̂)(1 − δ)cϕ]
1
2α, the truncated

CORSING solution TKû fulfills

E[‖TKû− u‖U ] <

(
1 +

2βC
1/2
ϕ

α̃

)
‖us − u‖U + 2Kε,

where β is the continuity constant of a(·, ·) defined in (4).

Proof. First, recalling the definition (25) of the event Ωs, and considering the par-
titioning Ω = Ω2s ∪ Ωc2s, we have the splitting

E[‖TKû− u‖U ] =

∫
Ω2s

‖TK(û− u)‖U dP +

∫
Ωc2s

‖TKû− u‖U dP.

Then, the second term is easily bounded as∫
Ωc2s

‖TKû− u‖U dP ≤ 2Kε.

Indeed, thanks to the adopted choice of m, Theorem 3.10 guarantees P(Ωc2s) ≤ ε.
Moreover, ‖TKû − u‖U ≤ 2K, since both ‖TKû‖U and ‖u‖U are less than or equal
to K.

Now, employing Lemma 3.14 and the triangle inequality, we have∫
Ω2s

‖TK(û−u)‖U dP ≤
∫

Ω2s

‖û−u‖U dP ≤
∫

Ω2s

‖û−us‖U dP+

∫
Ω2s

‖us−u‖U dP.

The second integral on the right hand side is less than or equal to the best s-term
approximation error ‖us − u‖U . In order to bound the first integral, we apply
Lemmas 3.12 and 3.13, obtaining∫

Ω2s

‖û− us‖U dP <
2

α̃

∫
Ω2s

R(us) dP ≤ 2

α̃
E[R(us)] ≤ 2βC

1/2
ϕ

α̃
‖us − u‖U ,
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where the last relation follows on applying Jensen’s inequality to (33). Notice that
Lemma 3.12 can be employed since the 2s-sparse RISP holds on the restricted
domain Ω2s. Combining all the inequalities yields the thesis. �

We provide a first recovery estimate in probability. This is asymptotically opti-
mal, but the constant grows like the inverse of the square root of the probability
of failure, which is rather pessimistic. This dependence will be removed in The-
orem 3.18, at the price of a higher regularity of the solution u and of the trial
functions.

Theorem 3.16 (Error estimate in probability). Given δ̂ ∈ (0, 1), choose M ∈ N
such that the truncation condition (37) is fulfilled. Then, for every 0 < ε≤ 1/2 and
δ ∈ (0, 1), provided

m ≥ 2C̃2s s‖νN,M‖1[2s log(eN/(2s)) + log(2s/ε)],

with C̃2s defined analogously to (24), with probability greater than or equal to 1−2ε,
the CORSING procedure computes a solution û such that

‖û− u‖U <

(
1 +

2βC
1/2
ϕ

α̃
√
ε

)
‖us − u‖U

where α̃ := [(1 − δ̂)(1 − δ)cϕ]
1
2α and β is the continuity constant of a(·, ·) defined

in (4).

Proof. Define es := ‖us − u‖U and the random variables Z := ‖û − u‖U and
Zs := ‖û− us‖U . Moreover, consider the quantity

(39) bs :=

(
1 +

2βC
1/2
ϕ

α̃
√
ε

)
es.

The goal is to show that P{Z ≥ bs} ≤ 2ε. The triangle inequality implies Z ≤
Zs + es. Thus,

P{Z ≥ bs} ≤ P{Zs ≥ bs − es}.
Moreover, defining the event Ω2s according to (25) and denoting by IA the indicator
function of a generic set A, we have

P{Zs ≥ bs − es} = E[I{Zs≥bs−es}] =

∫
Ω2s

I{Zs≥bs−es} dP +

∫
Ωc2s

I{Zs≥bs−es} dP

≤
∫

Ω2s

I{Zs≥bs−es} dP + P{Ωc2s}.

Theorem 3.10 implies P{Ωc2s} ≤ ε. Moreover, employing Lemmas 3.12 and 3.13, we
can bound the first integral as∫

Ω2s

I{Zs≥bs−es} dP ≤
∫

Ω2s

I{(2/α̃)R(us)>bs−es} dP

< E
[

4R(us)2

α̃2(bs − es)2

]
≤ 4Cϕβ

2e2
s

α̃2(bs − es)2
= ε,

where the last equality follows from (39).
�
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20 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

It is possible to remove the dependence on ε in the error estimate of Theorem 3.16
by employing Hoeffding’s bound for the sum of random variables and assuming a
higher regularity of the solution u and of the trial functions. The idea is to employ
Hoeffding’s bound to improve the tail estimate for the centered random variable
R(us)2 − E[R(us)2]. With this aim, we introduce a “stronger” norm on the trial
space and a “weaker” norm on the test space.

We recall Hoeffding’s bound for the sum of random variables (see [27, Theorem
7.20]).

Theorem 3.17 (Hoeffding’s bound). Let X1, . . . , Xm be independent random vari-
ables, with E[Xi] = 0 and |Xi| ≤ Bi, almost surely for every i ∈ [m]. Then, for
every t > 0, it holds

P
{ m∑
i=1

Xi ≥ t
}
≤ exp

(
− t2

2
∑m
i=1B

2
i

)
.

�

Now, consider two spaces Ũ ⊆ U and Ṽ ⊇ V , endowed with norm ‖ · ‖Ũ and
‖ · ‖Ṽ , respectively, such that a(·, ·) is continuous, namely,

(40) ∃β̃ > 0 : |a(u, v)| ≤ β̃‖u‖Ũ‖v‖Ṽ , ∀u ∈ Ũ , ∀v ∈ Ṽ .

The following recovery estimate in probability holds.

Theorem 3.18 (Error estimate in probability). Let Ũ ⊆ U , and Ṽ ⊇ V be such
that (40) is fulfilled, and assume that u ∈ Ũ , {ψj}j∈N ⊆ Ũ , and that there exists a
constant A > 0 such that

(41) ‖ϕq‖2Ṽ ≤ A νNq , ∀q ∈ N.

Given δ̂ ∈ (0, 1), choose M ∈ N such that the truncation condition (37) is fulfilled.
Then, for every 0 < ε ≤ 1/2 and δ ∈ (0, 1), provided

(42) m ≥ 2C̃2s smax{‖νN,M‖1, 1} [2s log(eN/(2s)) + log(2s/ε)],

with C̃2s defined analogously to (24), with probability greater than or equal to 1−2ε,
the CORSING procedure computes a solution û ∈ Ũ such that

‖û− u‖U ≤
4βC

1/2
ϕ

α̃
‖u− us‖U +

2β̃A1/2‖νN,M‖1/41

α̃
‖u− us‖Ũ ,

where α̃ := [(1− δ̂)(1− δ)cϕ]
1
2α, and us is defined as in (30).

Proof. First, since

R(us)2 − E[R(us)2] = m−1
m∑
i=1

(p−1
τi |a(u− us, ϕτi)|2 − E[R(us)2]),

we define

Xi := m−1(p−1
τi |a(u− us, ϕτi)|2 − E[R(us)2]).
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A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 21

Let es := ‖u − us‖U and ẽs := ‖u − us‖Ũ . Employing Lemma 3.13, relation (40),
and noticing that u− us ∈ Ũ (recall that the trial functions belong to Ũ), we have

|Xi| = m−1|p−1
τi |a(u− us, ϕτi)|2 − E[R(us)2]|

≤ m−1(p−1
τi |a(u− us, ϕτi)|2 + Cϕβ

2e2
s)

≤ m−1(β̃2ẽ2
s

‖ϕτi‖2Ṽ
νNτi

‖νN,M‖1 + Cϕβ
2e2
s).

Thanks to hypothesis (41), we obtain a uniform bound |Xi| ≤ B, with

B = m−1(β̃2A‖νN,M‖1ẽ2
s + Cϕβ

2e2
s).

As a consequence, recalling Lemma 3.12 and the splitting Ω = Ω2s ∪ Ωc2s as in
Theorem 3.15, we obtain, for any generic constant E > 0,

P{‖û− u‖U ≥ E} ≤ P{‖û− us‖U ≥ E − es}

≤ P
{

2

α̃
R(us) ≥ E − es

}
︸ ︷︷ ︸

=:P

+ε

A further application of Lemma 3.13 yields

P = P
{
R(us)2 − E[R(us)2] ≥ α̃2

4
(E − es)2 − E[R(us)2]

}
≤ P

{
R(us)2 − E[R(us)2] ≥ α̃2

4
(E − es)2 − Cϕβ2e2

s︸ ︷︷ ︸
=:t

}
.

Resorting to Hoeffding’s bound (Theorem 3.17), we have

P ≤ exp

(
− t2

2mB2

)
.

Finally, standard estimates show that the right hand-side is equal to ε if and only
if

E = es +

{
4β2Cϕ
α̃2

[
1 +

(
2 log ε−1

m

) 1
2
]
e2
s +

4β̃2A‖νN,M‖1
α̃2

(
2 log ε−1

m

) 1
2

ẽ2
s

} 1
2

.

Recalling hypothesis (42), we notice that

2 log ε−1 max{‖νN,M‖1, 1}
m

≤ 1,

and we simplify the estimate as follows

E ≤
(

1 +
2
√

2βC
1/2
ϕ

α̃

)
es +

2β̃A1/2‖νN,M‖1/41

α̃
ẽs

which, in turn, implies the thesis.
�

The error estimate of Theorem 3.18 does not depend on ε, but we have a factor
‖νN,M‖1/41 , which diverges for N,M → +∞. However, in view of Hypothesis 3, its
growth is at most polylogarithmic.
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22 S. BRUGIAPAGLIA, F. NOBILE, S. MICHELETTI, AND S. PEROTTO

We conclude this section with a useful corollary, dealing with a particular trunca-
tion condition. In practice, this corollary provides sufficient conditions for Theorem
3.15 to hold. We will apply this result to some examples in Section 4.

Corollary 3.19. Suppose that there exist two positive constants Cµ and γ̂ such
that

(43)
∑
q>M

µNq ≤ Cµ

(
N

M

)1/γ̂

, ∀M ∈ N.

Then, for every ε ∈ (0, 2−1/3] and for s ≤ 2N/e there exist two positive constants
Ĉ and C such that, for

(44) M ≥ Ĉsγ̂N and m ≥ Cs‖νN,M‖1[s log(N/s) + log(s/ε)],

the CORSING solution û fulfills

E[‖TKû− u‖U ] <

(
1 +

4β

α

[
Cϕ
cϕ

] 1
2
)
‖us − u‖U + 2Kε,

for every K > 0 such that ‖u‖U ≤ K, with TK defined as in (36) and where α and
β are defined by (3) and (4), respectively. In particular, two possible upper bounds
for the constants Ĉ and C are

Ĉ ≤
(

4Cµ

κ2scϕα2

)γ̂
and C ≤ 105

κ2scϕα2
,

respectively, with κs defined in (22).

Proof. The idea is to choose δ = δ̂ = 1/2 and, as anticipated, to apply Theorem
3.15. First, notice that assumption (43) is consistent with Hypothesis 2, on passing
to the limit for M → +∞. In view of Theorem 3.15, we show that the second
inequality in (44) implies (38) with a suitable choice of C. Moreover, the truncation
condition (37), on which Theorem 3.15 relies on, is implied by

2sCµ

(
N

M

)1/γ̂

≤ cϕα
2κ2s

2
,

that, in turn, is equivalent to

M ≥
(

4Cµ

κ2scϕα2

)γ̂
sγ̂N.

Moreover, thanks to the assumptions on ε and s, we have

ε ≤ 2−1/3 =⇒ log(2s/ε) ≤ 4 log(s/ε),

s ≤ 2N/e =⇒ log(eN/(2s)) ≤ 2 log(N/s).

Thus, recalling the right-hand side of (38), we have

2 C̃2s s‖νN,M‖1[2s log(eN/(2s))+ log(2s/ε)]

≤ 8 C̃2s s‖νN,M‖1[s log(N/s) + log(s/ε)],

where C̃2s is defined analogously to (24). In particular, if C in (44) is chosen such
that

C ≤ 8 C̃2s =
32

(1− log 2)κ2scϕα2
≤ 105

κ2scϕα2
,
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then (38) holds. Moreover, relation α̃ = [(1− δ̂)(1− δ)cϕ]
1
2α yields α̃ = 1

2c
1/2
ϕ α, so

that the quantity 2C
1/2
ϕ β/α̃ in Theorem 3.15 can be replaced by 4C

1/2
ϕ β/(c

1/2
ϕ α).
�

Remark 3.20. The assumptions ε ≤ 2−1/3 ≈ 0.79 and s ≤ 2N/e ≈ 0.74N made in
Corollary 3.19 are quite weak and they are chosen in such a way that the upper
bounds to Ĉ and C are easy to derive. Of course, more restrictive hypotheses on
ε and s would give sharper upper bounds for the asymptotic constants. Moreover,
the parameters δ̂ and δ could be chosen differently from δ = δ̂ = 1/2 and this would
lead to different values for the constant in the recovery error estimate.

Remark 3.21. If ε ≥ ss+1/Ns, then s log(N/s) + log(s/ε) ≤ 2s log(N/s) and the
term log(s/ε) disappears from the inequality on m by doubling the constant C,
giving the trend

m ≥ C‖νN,M‖1s2 log(N/s),

claimed in Algorithm 2.1. This assumption on ε is not restrictive, since s � N
guarantees ss+1/Ns � 1.

Remark 3.22. A result analogous to Corollary 3.19 holds in probability by resorting
to Theorem 3.16 (or Theorem 3.18) instead of Theorem 3.15 in the proof.

4. Application to a 1D advection-diffusion-reaction equation

In this section, we apply the general theory presented in Section 3 to elliptic
one-dimensional problems, such as the Poisson equation and an advection-diffusion-
reaction (ADR) equation.

We adopt Corollary 3.19 as the main tool. In particular, we provide estimates
for α, β, κs, Cµ, γ̂, νN and ‖νN,M‖1, and then deduce suitable hypotheses on m
and M such that the CORSING method recovers the best s-term approximation us
to u. All the recovery results of the section are given in expectation, but they can
be easily converted in probability (see Remark 3.22).

Let us first fix the notation. Consider D = (0, 1), U = V = H1
0 (D) and

(u, v)U = (u, v)V =

∫
D
u′(x)v′(x)dx,

resulting in ‖·‖U = ‖·‖V = |·|H1(D), the H1(D)-seminorm. Moreover, we introduce
two Hilbert bases ofH1

0 (D). The first one is the hierarchical multiscale basis [51, 19],
defined as

H`,k(x) := 2−
`
2H(2`x− k), ∀x ∈ [0, 1],

for every ` ∈ N0, k = 0, . . . , 2` − 1 and with H(x) := max(0, 1
2 − |x −

1
2 |), for any

x ∈ [0, 1], ordered according to the lexicographic mapping

j 7→ (`(j), k(j)) := (blog2(j)c, j − 2blog2(j)c).

The second one is the rescaled sine function basis

Sr(x) :=

√
2

rπ
sin(rπx), ∀x ∈ [0, 1], ∀r ∈ N.

For further details concerning these bases, see [11, Section 5]. It is easy to check
that both bases are orthonormal with respect to (·, ·)U .
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With reference to [11], when the following combination of trial and test functions
is employed

ψj = H`(j),k(j), ϕq = Sq,
we denote the approach by CORSING HS. On the contrary, when the roles of the
trial and test functions are switched, we denote it by CORSING SH. In both cases,
HS and SH, we observe that cϕ = Cϕ = 1 and that K = I. Thus, in particular,
from (22), κs = 1.

As the reference problem, we consider the one-dimensional ADR equation over
D, with Dirichlet boundary conditions

(45)

{
−u′′ + bu′ + ηu = f in D
u(0) = u(1) = 0,

with b, η ∈ R and f : (0, 1)→ R, corresponding to the weak problem

(46) find u ∈ H1
0 (D) : (u′, v′) + b(u′, v) + η(u, v) = (f, v), ∀v ∈ H1

0 (D),

where (·, ·) denotes the standard inner product in L2(D).

4.1. The Poisson equation (HS). First, we deal with the Poisson equation,
corresponding to (45) with b = η = 0, whose weak formulation is

(47) find u ∈ H1
0 (D) : a∆(u, v) = (f, v), ∀v ∈ H1

0 (D).

where a∆(u, v) := (u′, v′). In such a case, we denote the local a-coherence by µN∆ .
The inf-sup and continuity constants of a∆(·, ·) are α = β = 1.

We can prove the following result for the CORSING HS procedure applied to
(47).

Proposition 4.1. Fix a maximum hierarchical level L ∈ N, corresponding to N =
2L+1 − 1. Then, for every ε ∈ (0, 2−1/3] and s ≤ 2N/e, and provided that

M ≥ ĈsN, m ≥ Cs logM [s log(N/s) + log(s/ε)],

for suitable constants C and Ĉ, a valid upper bound νN is

νNq :=
8

πq
, ∀q ∈ N,

and the CORSING HS solution to (47) fulfills

E[|TKû− u|H1(D)] < 5|us − u|H1(D) + 2Kε,

for every K > 0 such that |u|H1(D) ≤ K, with TK defined as in (36). In particular,
two possible upper bounds for Ĉ and C are

Ĉ ≤ 320

3π2
≈ 10.8 and C ≤ 840

π

(
1 +

1

log 3

)
≈ 511.

Proof. An explicit computation yields the exact stiffness matrix entries (the depen-
dence of ` and k on j is omitted)

(48) a∆(H`,k,Sq) =
4
√

2

π

2
`
2

q
sin

(
πq

2`

(
k +

1

2

))
sin2

(π
4

q

2`

)
.
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Figure 1. Sharpness of the upper bound (49) with N = 127 and
M = 2047.

Using Definition 2.3, employing the inequalities sin2(x) ≤ 1 on the first sine and
sin4(x) ≤ min{1, |x|} on the second sine, for every x ∈ R, we have

|a∆(H`,k,Sq)|2 ≤
32

π2

2`

q2
sin4

(π
4

q

2`

)
≤ min

{
32

π2

2`

q2
,

8

πq

}
,

and, thus, we obtain the upper bound

(49) µN∆,q ≤ min

{
32

π2

2L

q2
,

8

πq

}
.

Figure 1 shows that this bound is sharp. Considering the first argument of the
minimum in (49), on noticing that 2L = (N + 1)/2, we obtain∑

q>M

µN∆,q ≤
32

π2

N + 1

2

∑
q>M

1

q2
≤ 16

π2
(N + 1)

[
1

(M + 1)2
+

∫ ∞
M+1

1

q2
dq
]

=
16

π2

N + 1

M + 1

[
1

M + 1
+ 1

]
≤ 20

π2

N + 1

M + 1
≤ 80

3π2

N

M
.

The fourth and fifth relations hinges on the assumption L ≥ 1, that implies N ≥ 3.
Consequently, assumingM ≥ N we have alsoM ≥ 3. This implies 1/(M+1) ≤ 1/4
(fourth relation) and (N + 1)/(M + 1) ≤ 4N/(3M) (fifth relation). Thus, in view
of Corollary 3.19, we can pick

Cµ =
80

3π2
and γ̂ = 1.

Now, to bound ‖νN,M‖1, which is required by Corollary 3.19, we deal with the
second argument of the minimum in (49) and set

νNq :=
8

πq
.

This choice leads to the estimate

‖νN,M‖1 =
8

π

M∑
q=1

1

q
≤ 8

π

[
1 +

∫ M

1

1

q
dq

]
=

8

π
(1 + logM)

≤ 8

π

(
1 +

1

log 3

)
logM,(50)

since M ≥ 3. Thus, combining the lower bound for m and M in Corollary 3.19
with (50), we conclude the proof. �
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Remark 4.2. The upper bound sin4(x) ≤ min{1, |x|} can be improved as sin4(x) ≤
min{1, 0.68 |x|}, which can be easily checked numerically. This change leads to
rescale the value of C by a factor 0.68, i.e., C ≈ 347.

Remark 4.3. The choice νNq = 8/(πq) is suboptimal. If we choose the sharper upper
bound

νNq = min

{
32

π2

2L

q2
,

8

πq

}
,

the term logM in the lower bound to m can be replaced by logN . Indeed, in this
case

‖νN,M‖1 .
N∑
q=1

1

q
+N

M∑
q=N+1

1

q2
. logN +N

(
1

N
− 1

M

)
. logN + 1− 1

s
. logN.

Moreover, thanks to Hypothesis 3, we notice that the choice νNq ∼ 1/q is the slowest
algebraic decay allowed, since for νNq ∼ 1/qr, with r < 1, the quantity ‖νN,M‖1
diverges algebraically in M .

4.2. ADR equation (HS). We consider problem (45) and state the following
result.

Proposition 4.4. Fix a maximum hierarchical level L ∈ N, corresponding to N =
2L+1 − 1. Then, for every ε ∈ (0, 2−1/3] and s ≤ 2N/e, and provided that

M & sN,
|b|
M
. 1,

|η|
M2
. 1,

m & s(logM + |b|2 + |η|2)[s log(N/s) + log(s/ε)],

a valid upper bound νN is

νNq ∼
1

q
+
|b|2

q3
+
|η|2

q5
, ∀q ∈ N,

and the CORSING HS solution to (46), with η > −2, fulfills

E[|TKû− u|H1(D)] <

(
1 +

4 + 2
√

2|b|+ 2|η|
1 + min(0, η/2)

)
|us − u|H1(D) + 2Kε,

for every K > 0 such that |u|H1(D) ≤ K, with TK defined as in (36).

Proof. The argument is the same as in Proposition 4.1, thus we will just highlight
the different parts. The precise values of the asymptotic constants will not be
tracked during the proof.

First, a straightforward computation gives

a(H`,k,Sq) =
4
√

2

π

2
`
2

q
sin2

(π
4

q

2`

)[(
1 +

η

(πq)2

)
sin
(πq

2`
(k + 1

2 )
)

− b

πq
cos
(πq

2`
(k + 1

2 )
)]
.

Hence, using the same upper bounds as in Proposistion 4.1, we obtain

|a(H`,k,Sq)|2 . min

{
2`

q2
,

1

q

}(
1 +
|b|2

q2
+
|η|2

q4

)
,
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and, consequently,

(51) µNq . min

{
N

q2
,

1

q

}(
1 +
|b|2

q2
+
|η|2

q4

)
.

Considering the first argument of the minimum in (51), yields∑
q>M

µNq . N

[ ∑
q>M

1

q2
+ |b|2

∑
q>M

1

q4
+ |η|2

∑
q>M

1

q6

]

. N

[
1

M
+
|b|2

M3
+
|η|2

M5

]
.
N

M
.

The second inequality hinges on estimates of the sums by suitable integrals, whereas
the third one is implied by the hypotheses |b|/M . 1 and |η|/M2 . 1.

Now, considering the second argument of the minimum in (51), we have the
upper bound

νNq ∼
1

q
+
|b|2

q3
+
|η|2

q5
, ∀q ∈ N,

and, consequently, the `1-norm of its truncation fulfills

‖νN,M‖1 ∼
M∑
q=1

1

q
+

M∑
q=1

|b|2

q3
+

M∑
q=1

|η|2

q5
. logM + |b|2 + |η|2.

Finally, we notice that (3) and (4) hold with

α = 1 + min
(

0,
η

2

)
, β = 1 +

|b|√
2

+
|η|
2
,

thanks to the Poincaré inequality
√

2‖v‖L2(D) ≤ |v|H1(D), ∀v ∈ H1
0 (D).

The thesis is now a direct consequence of Corollary 3.19. �

4.3. The Poisson equation (SH). We prove a recovery result for the CORSING
SH method applied to the Poisson problem (47).

Proposition 4.5. For every ε ∈ (0, 2−1/3] and s ≤ 2N/e, there exist two positive
constants C and Ĉ such that, and provided

M ≥ Ĉ
√
sN, m ≥ Cs log(M)[s log(N/s) + log(s/ε)],

with M of the form M = 2L+1 − 1 for some L ∈ N, a valid upper bound νN is

νNq =
1

2`(q)−1
, ∀q ∈ N,

and the CORSING SH solution to (47) fulfills

E[|TKû− u|H1(D)] ≤ 5|us − u|H1(D) + 2Kε,

for every K > 0 such that |u|H1(D) ≤ K, with TK defined as in (36) and where α and
β are defined by (3) and (4), respectively. In particular, two possible upper bounds
for Ĉ and C are

Ĉ ≤
√

2

3
π ≈ 2.57 and C ≤ 210 log2(e) log(4)

log(3)
≈ 382.
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Figure 2. Sharpness of the upper bound (52) with N = 127 and
M = 2047.

Proof. The proof is analogous to that of Proposition 4.1. We highlight only the
main differences. First, notice that

a∆(Sj ,H`(q),k(q)) = a∆(H`(q),k(q),Sj).

Moving from (48) and employing the inequality sin4(x) ≤ min{|x|4, |x|2}, for every
x ∈ R, we obtain

(52) µN∆,q ≤ min

{
π2

8

N2

23`(q)
,

1

2`(q)−1

}
.

Figure 2 shows the sharpness of this bound.
Considering the first argument of the minimum in (52), and sinceM = 2L+1−1,

we have that

∑
q>M

µN∆,q ≤
π2

8
N2
∑
`>L

2`−1∑
k=0

1

23`
=
π2

8
N2
∑
`>L

1

22`
=
π2

8

N2

22(L+1)

∑
`≥0

1

22`
≤ π2

6

(
N

M

)2

where the change of variable q 7→ (`, k) has been used. Thus, if follows that

Cµ =
π2

6
and γ̂ =

1

2
.

Now, by considering the second argument of the minimum in (52), we select

νNq :=
1

2`−1

and conclude the proof by computing

‖νN,M‖1 =

L∑
`=0

2`−1∑
k=0

1

2`−1
= 2(L+ 1) = 2 log2(e) log(M + 1)

≤ 2 log2(e)
log(M + 1)

log(M)
log(M) ≤ 2 log2(e) log(4)

log(3)
log(M),

since M ≥ 3, thanks to L ≥ 1. �

Remark 4.6. The choice of p prompted by Proposition 4.5 (i.e., pq ∼ 2−`(q)) coin-
cides with that in [11], in the R-CORSING SH case, for the corresponding parameter
w, tuned via a trial-and-error procedure.
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We also provide a recovery result in high probability for the CORSING SH ap-
proach, as an application of Theorem 3.18.

Proposition 4.7. Let f ∈ L2(D). Given s ≤ N and 0 < ε ≤ 1/2, chooseM,m ∈ N
such that

M &
√
sN, m & s log(M)[s log(N/s) + log(s/ε)],

and νNq ∼ 1/2`(q).
Then, with probability greater than or equal to 1−2ε, the CORSING SH solution

û to the Poisson problem (47) fulfills

|û− u|H1(D) . |u− us|H1(D) + log(M)
1
4 |u− us|H2(D),

where |w|H2(D) := ‖w′′‖L2(D) is the H2(D)-seminorm.

Proof. We apply Theorem 3.18. Employing the same argument as in Corollary 3.19,
we have that M &

√
sN guarantees the truncation condition (37).

Now, we set Ũ := H2(D) ∩ H1
0 (D) and Ṽ := L2(D), equipped with the norm

‖ · ‖Ũ := | · |H2(D) and ‖ · ‖Ṽ := ‖ · ‖L2(D), respectively. Of course, we have the
continuity of the bilinear form (u′, v′) with respect to the adopted (semi)norms,
f ∈ L2(D) implies u ∈ H2(D) (see, e.g., [37, Section 6.1.3]), and the trial functions
belong to H2(D) ∩H1

0 (D). Moreover, a direct computation shows that

‖ϕq‖2L2(Ω) ∼ 2−2`(q) . 2−`(q) ∼ νNq .

The thesis follows by recalling that ‖νN,M‖1 ∼ log(M) (see the proof of Proposi-
tion 4.5). �

The recovery estimate of Proposition 4.7 degenerates as M → +∞, due to the
factor log(M)1/4. Nonetheless, this factor grows at an extremely slow rate. For
example, log(1035)1/4 ≤ 3. We also notice that the same result does not hold in
the HS setting, due to the low regularity of the trial functions (they only belong
to Hs(D), with s < 3/2). A possible remedy could be to replace the hierarchical
multiscale basis with a family of more regular wavelets.

4.4. ADR equation (SH). Considerations analogous to those made in the HS
case hold in the advective/reactive case. It suffices to notice that

(u′, v′) + b(u′, v) + η(u, v) = (v′, u′)− b(v′, u) + η(v, u), ∀u, v ∈ H1
0 (D).

4.5. CORSING HS or SH? A comparison. The theoretical analysis carried out
in the previous sections shows that both CORSING HS and SH are able to recover
the best s-term approximation to the solution u to an ADR problem with constant
coefficients, provided that m & s2 log(M) log(N). Comparing the HS and the SH
setting, we have two different truncation conditions. In the HS case, it is required
thatM & sN , whereas in the SH case we haveM &

√
sN . However, this difference

has only a slight impact on the number m of test functions.
From the accuracy viewpoint, the best choice is the one that minimizes the best s-

term approximation error of the solution with respect to the trial basis. In principle,
the HS setting is more suited when the solution exhibits localized phenomena, such
as boundary layers or small features. The SH one is more advantageous when the
solution is periodic and smooth, due to the consequent fast decay of the Fourier
coefficients, or when the solution exhibits global periodic multiscale phenomena. In
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Section 5, we will focus on the HS case, due to our interest in assessing the ability
of CORSING to capture localized features in a non-periodic scenario. For further
numerical experiments about the SH setting, we refer the reader to [11].

Remark 4.8 (Application to more general cases). The main difficulty of the analysis
of CORSING is the derivation of the upper bound νN to the local a-coherence. For
instance, in dealing with the ADR equation with non-constant coefficients, a highly
oscillatory diffusion coefficient can considerably deteriorate νN . One possibility to
tackle this issue is to expand the non-constant coefficient with respect to a suitable
basis and then to exploit Propositions 4.1 and 4.5.

Considering the extension to higher-dimensional problems, first results are pro-
vided in [11, Section 6] where CORSING is applied to the two-dimensional ADR
equation with constant coefficients, with hierarchical pyramids and tensor product
of sine functions. Some numerical results concerning the application of CORSING
to the three-dimensional Poisson equation and to the two-dimensional stationary
Stokes problem, along with a numerical assessment on the local a-coherence can be
found in [10].

5. Numerical experiments

We validate the above theoretical results by both a qualitative and a quantitative
analysis. For a more complete numerical assessment of CORSING, we refer to [11].

All the computations have been performed using MatlabR© R2013a 64-bit (ver-
sion 8.1.0.604) on a MacBook Pro equipped with a 3GHz Intel Core i7 processor
and 8GB of RAM.

We recall that the omp-box MatlabR© package (version 10) has been employed
in the recovery phase. The stopping criterion employed is based on the sparsity
level s, which corresponds to the number of OMP iterations.

5.1. Sensitivity analysis of the RISP constant. We investigate the sensitivity
of α̃ to the constant C on the Poisson problem (47), in the setting HS. We fix
the hierarchical level to L = 14, corresponding to N = 32767. We consider the
values s = 1, 2, 3, 4, 5 and choose M = sN , while selecting m according to one of
the following rules

Rule 1: m = dCs2 logM log(N/s)e,
Rule 2: m = dCs logM log(N/s)e,(53)

Rule 3: m = dCs log(N/s)e.

Rule 1 is the one derived in this paper, corresponding to γ = 2. Rule 2 is associated
with γ = 1, and Rule 3 is the asymptotically optimal lower bound that a general
sparse recovery procedure requires to be stable (see [27, Proposition 10.7]). For
each choice ofM and m, we repeat the following experiment 50 times: first, extract
τ1, . . . , τm ∈ [M ] i.i.d. with probability pq ∼ 1/q and build the corresponding
matrices D and A; then, generate 1000 random subsets S1, . . . ,S1000 ⊆ [N ] of
cardinality s and compute the non-uniform RISP constant α̃Sk for every k ∈ [1000],
corresponding to the minimum singular value of DA, using the svd command;
finally, approximate the uniform RISP constant as

α̃ ≈ min
k∈[1000]

α̃Sk .

Aug 3 2016 02:45:43 EDT
Version 2 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



A THEORETICAL STUDY OF COMPRESSED SOLVING FOR ADR PROBLEMS 31

Rule 1 Rule 2 Rule 3

C
=

2

0

0.25

0.5

0.75

1

1 2 3 4 5
s

R
IS

P
 c

on
st

an
t

0

0.25

0.5

0.75

1

1 2 3 4 5
s

R
IS

P
 c

on
st

an
t

0

0.25

0.5

0.75

1

1 2 3 4 5
s

R
IS

P
 c

on
st

an
t

C
=

5

0

0.25

0.5

0.75

1

1 2 3 4 5
s

R
IS

P
 c

on
st

an
t

0

0.25

0.5

0.75

1

1 2 3 4 5
s

R
IS

P
 c

on
st

an
t

0

0.25

0.5

0.75

1

1 2 3 4 5
s

R
IS

P
 c

on
st

an
t

Figure 3. Sensitivity analysis of the RISP constant, with M =
sN and m defined according to (53).

We consider the three trends in (53) and C = 2 or 5. The corresponding six boxplots
relative to the 50 different values of α̃, computed for each s, are shown in Figure 3,
where the crosses represent the outliers.

For Rule 1 and 2, α̃ shows a similar behavior since both trends are approaching
the value of the inf-sup constant, α = 1, when s grows. We notice that the values
computed for Rule 1 are more concentrated around the mean, implying that γ = 2
is a too conservative choice. For Rule 3, α̃ exhibits the lowest values, though
the corresponding boxplots are quite aligned and have similar size, especially for
C = 5, where α̃ seems to stabilize around the value α/2. For C = 2, α̃ approaches
the value α/4, even though the presence of too many outliers suggests that the
RISP is not being satisfied for a reasonable value of ε. However, since Rule 3 is
quite satisfactory, especially for C = 5, the quantity logM does not seem to be
really necessary in Rule 2. Moreover, Rule 1 is penalized by both the logM term
and the extra s factor.2

5.2. CORSING validation . We test CORSING HS on the one-dimensional Pois-
son equation (47), choosing the forcing term so that the exact solution be

(54) u(x) := ũ0.2,0.7,1000(x) + 0.3 · ũ0.4,0.4005,2000(x), ∀x ∈ [0, 1]

with

ũx1,x2,t(x) := ux1,x2,t(x)− ex1,x2,t(x),

ex1,x2,t(x) := xux1,x2,t(1) + (1− x)ux1,x2,t(0),

ux1,x2,t(x) := arctan(t(x− x1))− arctan(t(x− x2)),

2In CS, there are cases where the upper bound to the RIP constant is much better for randomly
chosen supports Sk than for the worst case (see, e.g., [27, Chapter 14]). Similar phenomena could
also occur for the RISP constant. Thus, the results of these numerical experiments could be too
optimistic.
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Figure 4. Left: comparison between u defined in (54) (dashed
line) and û (solid line). Right: a zoom in on the spike-shaped
detail of u. Crosses correspond to the selected trial functions.
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Figure 5. Comparison between u (circles) and û (crosses).

for every x ∈ [0, 1], 0 ≤ x1 < x2 ≤ 1 and t ∈ R. This particular solution is
designed so as to exhibit two boundary layers at x = 0.2 and x = 0.7, and a small
spike-shaped detail at x = 0.4 (see Figure 4). The hierarchical multiscale basis is
particularly suited to capture these sharp features. We fix L = 12, corresponding
to N = 8191, s = 50, M = sN , and m = 1200. According to Proposition 4.1, we
choose the upper bound νNq = 1/q.

In Figure 4, we compare u (dashed line) and û (solid line). The exact solu-
tion is well recovered. Both boundary layers are correctly captured and also the
spike-shaped feature is successfully detected. More quantitatively, the best 50-term
relative error is |u − u50|H1/|u|H1 ≈ 0.092 and the relative error of the CORSING
solution is |u− û|H1/|u|H1 ≈ 0.111. Thus, via CORSING, we loose only 21% of the
best possible accuracy.

Figures 5 and 6, highlight that CORSING is able to find the most important
coefficients of u. In particular, in Figure 5, the coefficients of u and û are plotted
according to the lexicographic ordering, whereas in Figure 6 they are shown in two
dimensions: level ` is the vertical axis, and each level is divided horizontally into
2` parts, corresponding to k = 0, . . . , 2` − 1, (left to right). The color plots refer to
|u`,k| (left) and |û`,k| (right), in logarithmic scale. It is remarkable the capability of
CORSING in detecting the localized features of the solution (see the isolated vertical
line in Figure 6 (right)).
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Figure 7. CORSING performance for the two choices of the upper
bound νN1 and νN2 defined in (55). On the abscissa different values
of m, on the ordinate the relative error with respect to the H1(D)-
seminorm computed over 50 runs of CORSING.

5.3. Sharpness of the upper bound νN . In this experiment, we assess to which
extent the sharpness of the upper bound νN affects the CORSING performance.
We consider the same problem as in Section 5.2, keeping the choices L = 12 (cor-
responding to N = 8191), s = 50, and M = sN . Then, we let m assume the
values 200, 400, . . . , 2000. For each value of m, we apply the CORSING procedure
employing two different upper bounds, namely

(55) νN1 =

(
min

{
32

π2

2L

q2
,

8

πq

})
q∈N

and νN2 =

(
8

πq

)
q∈N

.

The first one corresponds to (49) and is very sharp (Figure 1), whereas the second
one, employed in Proposition 4.1, is slightly looser. Comparing the two expressions,
we see that νN2 looses its sharpness for q ≥ 4/π · 2L ≈ 5215 (i.e., when νN1 ≤ νN2 ).
In practice, this has the effect of favoring the highest frequencies during the test
selection.

The results are summarized in Figure 7 and Table 1. In Figure 7, we have the
boxplot corresponding to the relative errors computed with respect to the H1(D)-
seminorm, against m. Each value of m corresponds to 50 runs of CORSING. In
Table 1, we show the mean and the unbiased standard deviation of the computed
relative errors, for each value of m.
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νN1 νN2
m Mean Std. dev. Mean Std. dev.
200 6.37e-01 2.32e-01 8.51e-01 2.57e-01
400 3.37e-01 5.35e-02 3.79e-01 5.81e-02
600 2.04e-01 4.67e-02 2.60e-01 6.01e-02
800 1.39e-01 2.86e-02 1.61e-01 3.69e-02
1000 1.17e-01 1.59e-02 1.22e-01 1.72e-02
1200 1.05e-01 8.44e-03 1.07e-01 8.25e-03
1400 9.96e-02 5.08e-03 1.00e-01 6.03e-03
1600 9.76e-02 4.52e-03 9.85e-02 3.70e-03
1800 9.63e-02 2.00e-03 9.63e-02 2.56e-03
2000 9.53e-02 1.81e-03 9.67e-02 2.65e-03

Table 1. Mean value and (unbiased) standard deviation of the
relative errors corresponding to same data of Figure 7.

We notice that the results associated with the sharper upper bound νN1 are
better than those provided by νN2 . Nevertheless, the difference does not seem to
be significative from a qualitative viewpoint. In particular, the two error decays
in Figure 7 exhibit the same trend. From Table 1, we notice that the CORSING
performance is better in the first case with respect to the mean values and to the
standard deviation, but the difference is not impressive.

This experiment seems to justify the use of upper bounds that are not completely
sharp.

5.4. Convergence analysis. We now perform a convergence analysis of CORSING
HS applied to (47), showing that the mean error shares the same trend as the best
s-term approximation error, as predicted by the theoretical results. In particular,
the forcing term f is chosen such that the exact solution be

u(x) := Cu(1− x)(exp(100x)− 1),

where Cu is chosen such that |u|H1 = 1. We take L = 11, corresponding to
N = 4095. For s = 4, 8, 16, 32, we define M = sN and m = dCsγ logM log(N/s)e
for γ = 1, 2, and for different values of C. For every combination of γ and C, we
run 100 CORSING experiments and show the mean error obtained ± the standard
deviation, computed using the unbiased estimator. In the case γ = 1, we select
C = 0.25, 0.5, 0.75, whereas for γ = 2, we consider C = 0.01, 0.03, 0.05. The values
of C are smaller for γ = 2, in order to ensure that m < N for every s.

The results are shown in Figure 8. The mean error reaches the best s-term
approximation rate, that is proportional to 1/s.

6. Conclusions

We presented a rigorous formalization and provided a theoretical analysis of the
CORSING (COmpRessed SolvING) method [11]. Our analysis essentially relies on the
concepts of local a-coherence and restricted inf-sup property (RISP). In particular,
we showed how suitable hypotheses on the local a-coherence are sufficient to guar-
antee the RISP. As a consequence, we provided estimates of the CORSING solution
with respect to the best s-term approximation error in expectation (Theorem 3.15)
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Figure 8. Convergence analysis: mean error ± standard devia-
tion and best s-term approximation error. Case γ = 1 (left) and
γ = 2 (right).

and in probability (Theorems 3.16 and 3.18). This general theory has been applied
to the case of the one-dimensional ADR equation with constant coefficients, and
numerical experiments confirm the theoretical results.

Important issues are still open. For instance, the application of our theoret-
ical results to more general cases, such as one-dimensional ADR equation with
non-constant coefficients and the two- or three-dimensional case, is not a trivial
extension of the results presented here (see Remark 4.8). Another open issue is
to assess whether the definition (5) for the probability distribution on the set of
test basis functions is the best possible. For example, in the CORSING HS case, a
valuable alternative could be to fully sample at low frequencies and subsample only
at higher frequencies, in the spirit of the multi-level sampling schemes studied in
[4, 42].

We think that the CORSING method can unveil its full potential when dealing
with PDE problems where the stiffness matrix is hard to sparsify, such as nonlocal
problems [36, 21]. In this case, it could be competitive with state-of-the-art solvers
likemultigrid [49] or wavelet methods [19], whose objective is to sparsify the stiffness
matrix as much as possible.

However, this first theoretical analysis of the method highlights the importance
of the local a-coherence and the RISP as powerful picklocks, capable to cast the
compressed sensing philosophy into the PDEs setting, and these have to be analyzed
for each specific problem.
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