Remanufacturing is recognized as a major circular economy option to recover and upgrade functions from post-use products. However, the inefficiencies associated with operations, mainly due to the uncertainty and variability of material flows and product conditions, undermine the growth of remanufacturing. With the objective of supporting the design and management of more proficient and robust remanufacturing processes, this paper proposes a generic and reconfigurable simulation model of remanufacturing systems. The developed model relies upon a modular framework that enables the user to handle multiple process settings and production control policies, among which token-based policies. Customizable to the characteristics of the process under analysis, this model can support logistics performance evaluation of different production control policies, thus enabling the selection of the optimal policy in specific business contexts. The proposed model is applied to a real remanufacturing environment in order to validate and demonstrate its applicability and benefits in the industrial settings.

Modularization in material flow simulation for managing production releases in remanufacturing

GASPARI, LORENZO;Colledani, Marcello;
2017-01-01

Abstract

Remanufacturing is recognized as a major circular economy option to recover and upgrade functions from post-use products. However, the inefficiencies associated with operations, mainly due to the uncertainty and variability of material flows and product conditions, undermine the growth of remanufacturing. With the objective of supporting the design and management of more proficient and robust remanufacturing processes, this paper proposes a generic and reconfigurable simulation model of remanufacturing systems. The developed model relies upon a modular framework that enables the user to handle multiple process settings and production control policies, among which token-based policies. Customizable to the characteristics of the process under analysis, this model can support logistics performance evaluation of different production control policies, thus enabling the selection of the optimal policy in specific business contexts. The proposed model is applied to a real remanufacturing environment in order to validate and demonstrate its applicability and benefits in the industrial settings.
2017
Kanban; Modularity; Production control policies; Remanufacturing; Simulation; Waste Management and Disposal; Industrial and Manufacturing Engineering; Management, Monitoring, Policy and Law
File in questo prodotto:
File Dimensione Formato  
Modularization in material flow simulation for managing production releases in remanufacturing.pdf

accesso aperto

: Publisher’s version
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1048110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact