We address the problem of geostatistical simulation of spatial complex data, with emphasis on functional compositions (FCs). We pursue an object oriented geostatistical approach and interpret FCs as random points in a Bayes Hilbert space. This enables us to deal with data dimensionality and constraints by relying on a solid geometric basis, and to develop a simulation strategy consisting of: (i) optimal dimensionality reduction of the problem through a simplicial principal component analysis, and (ii) geostatistical simulation of random realizations of FCs via an approximate multivariate problem.We illustrate our methodology on a dataset of natural soil particle-size densities collected in an alluvial aquifer.

Object Oriented Geostatistical Simulation of Functional Compositions via Dimensionality Reduction in Bayes spaces

Alessandra Menafoglio;Alberto Guadagnini;Piercesare Secchi
2016-01-01

Abstract

We address the problem of geostatistical simulation of spatial complex data, with emphasis on functional compositions (FCs). We pursue an object oriented geostatistical approach and interpret FCs as random points in a Bayes Hilbert space. This enables us to deal with data dimensionality and constraints by relying on a solid geometric basis, and to develop a simulation strategy consisting of: (i) optimal dimensionality reduction of the problem through a simplicial principal component analysis, and (ii) geostatistical simulation of random realizations of FCs via an approximate multivariate problem.We illustrate our methodology on a dataset of natural soil particle-size densities collected in an alluvial aquifer.
2016
Proceedings of the 48th Scientific meeting of the Italian Statistical Society
9788861970618
Object Oriented geostatistics, functional compositions, Bayes Hilbert spaces, uncertainty quantification
File in questo prodotto:
File Dimensione Formato  
2016_SIS_MenafoglioEtAl_ObjectOrientedGeostatisticalSimulationOfFCs.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1047970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact