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Object Oriented Geostatistical Simulation of
Functional Compositions via Dimensionality
Reduction in Bayes spaces
Simulazione geostatistica orientata agli oggetti per
composizioni funzionali tramite riduzione dimensonale in
Spazi di Bayes

Alessandra Menafoglio, Alberto Guadagnini and Piercesare Secchi

Abstract We address the problem of geostatistical simulation of spatial complex
data, with emphasis on functional compositions (FCs). We pursue an object ori-
ented geostatistical approach and interpret FCs as random points in a Bayes Hilbert
space. This enables us to deal with data dimensionality and constraints by relying
on a solid geometric basis, and to develop a simulation strategy consisting of: (i) op-
timal dimensionality reduction of the problem through a simplicial principal com-
ponent analysis, and (ii) geostatistical simulation of random realizations of FCs via
an approximate multivariate problem. We illustrate our methodology on a dataset of
natural soil particle-size densities collected in an alluvial aquifer.
Abstract Si considera il problema della simulazione geostatistica di dati comp-
lessi spazialmente distribuiti, con particolare riferimento a composizioni funzionali
(FC). Si segue un approccio geostatistico orientato agli oggetti, interpretando le FC
come punti aleatori in uno spazio di Hilbert Bayes. Questo consente di trattare la
dimensionalità dei dati e i relativi vincoli poggiando su una solida base geometrica,
e di sviluppare una strategia di simulazione in due passi: (i) riduzione dimensionale
ottima attraverso un’analisi delle componenti principali funzionali simpliciali, e (ii)
simulazione geostatistica di FC attraverso un problema multivariato approssimato.
La metodologia proposta è illustrata attraverso la sua applicazione a un dataset di
densità granulometriche osservate in un acquifero alluvionale.
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1 Introduction

Environmental field studies are nowadays based on heterogeneous, complex and
spatially dependent data, such as georeferenced functional data (e.g., curves or sur-
faces) or distributional data (e.g., probability density functions). The variety, di-
mensionality and complexity of these data pose new challenges for data-driven geo-
science applications. Based on our recent work [5], in this communication we fo-
cus on the problem of uncertainty quantification via stochastic simulation, in the
presence of complex spatial data such as functional compositions (FCs). FCs are
infinite-dimensional data that provide only relative information, being constrained
to be positive and integrate to a constant (e.g., probability density functions). FCs
are found, e.g., in field studies relying upon particle-size densities (PSDs), as those
shown in Fig. 1(a) and considered in [4, 5]. These data describe the local distri-
bution of grain sizes for 60 soil samples collected along a borehole in a shallow
aquifer near the city of Tübingen, Germany. PSDs are relevant to describe the tex-
tural properties of aquifer systems, as well as to estimate key parameters such as
hydraulic conductivity. In this setting, stochastic simulation is geared at providing
multiple realizations of the entire field of PSDs, consistent with available data. Fol-
lowing our proposal in [5], we pursue an object oriented approach (e.g., [3]) and
interpret each datum as a point within the Bayes Hilbert space of [1, 6] whose ele-
ments are FCs. We here review the object oriented method for stochastic simulation
we recently proposed in [5]. The method relies on (i) dimensionality reduction via
simplicial functional principal component analysis (SFPCA, [2]), and (ii) geostatis-
tical simulation of an approximate problem of reduced dimension. We demonstrate
our methodology on the field data of PSDs depicted in Fig. 1(a).

2 Geostatistical simulation in Bayes spaces

Denote by (Ω ,F,P) a probability space, by D ⊂ Rd a spatial domain, and let Xs
be a random element in a Hilbert space (H,+, ·,〈·, ·〉), referred to a location s ∈ D.
For the dataset of PSDs in Fig. 1(a), Xs represents a random PSD at s ∈ D, and
D ⊂ R denotes the target borehole (i.e., a 1D spatial domain). Even though H may
denote a general Hilbert space, for the purpose of our application we here focus on
the Bayes Hilbert space A2(T ) (or A2 for short) of [1], whose elements are FCs on
T = [tm, tM]⊂R with square-integrable logarithm. The space A2, endowed with the
perturbation (+) and powering (·) operations (see [1, 6])

( f +g)(t) =
f (t)g(t)∫

T f (s)g(s)ds
, (α · f )(t) =

f (t)α∫
T f (s)α ds

,

and the inner product
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〈 f ,g〉= 1
2|T |

∫
T

∫
T

ln
f (t)
f (s)

ln
g(t)
g(s)

dt ds, f ,g ∈ A2(T ),

is a separable Hilbert space. We remark that (A2,+, ·,〈·, ·〉) is precisely designed to
reflect the peculiar features of FCs, such as the properties of scale invariance and
relative scale [6].

Given a set of locations s1, ...,sn, and the observations Xs1 , ...,Xsn at these lo-
cations, we aim to provide random realizations of the element Xs0 at a target loca-
tion s0 ∈ D, conditional to Xs1 , ...,Xsn (i.e., to perform conditional simulation).
Note that the problem is particularly challenging, since we aim to sample from
a distribution on an infinite-dimensional space of constrained objects. We assume
that the Xs1 , ...,Xsn are a partial observation of a Gaussian stationary random field
{Xs,s ∈ D} on H, with (constant) spatial mean m = E[Xs], and cross-covariance
operator C. The latter is defined, for s1,s2 ∈ D, as

C(s1− s2)x = E[〈Xs1 −m,x〉(Xs2 −m)], x ∈ H.

Given the Hilbert space structure of H and following [5], we consider for the
field a truncated K-dimensional Karhunen-Loève expansion, which provides nested
optimal approximations of the observations for any finite order K. Specifically,
call (λk,ek), k ≥ 1, the eigenpairs of the zero-lag covariance operator C(0), i.e.,
the covariance operator associated with each Xs. In [5], we propose projecting
the data over the first K eigenfunction {ek,1 ≤ k ≤ K}, and accordingly model
the data through the joint modeling of the coefficients {ξk(s),k = 1, ...,K,s ∈ D},
where ξk(s) = 〈Xs−m,ek〉 represents the projection of the centered observation at
s along the eigenfunction ek. We refer to [5] for further theoretical justification of
the method and associated details.

In light of these observations, the following two step procedure can be consid-
ered for the stochastic simulation in A2 (or, generally, in H) [5]: (i) compute the
eigen-decomposition of the (empirical) zero-lag covariance, and the corresponding
coefficients; (ii) provide conditional simulations of the multivariate random field of
coefficients. The latter step can be performed through any of the widely employed
geostatistical techniques for the simulation of multivariate random fields. We finally
note that step (i) is based on a principal component analysis performed in the Bayes
Hilbert space, i.e., on a simplicial principal component analysis (SFPCA, [2]). The
latter identifies the directions in A2 of maximum variability of the data. Given that
A2 is a Hilbert space, all the techniques which are useful to interpret principal com-
ponents in multivariate or functional settings can be employed.

3 An application to particle-size densities at the Lauswiesen site

In this communication, we illustrate our method through its application to the field
data depicted in Fig. 1(a), which represent a subset of the data considered in [5].
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(a) Particle−size densities (smoothed data)

ln(Particle−size diameter) [ln(mm)]

  E
le

va
tio

n,
 z

 [m
 a

.s
.l.

]

301.0

302.0

305.0

306.0

307.1

308.2

−2.8 −1.5 −0.3 0.9 2.1 3.3 4.6

−2 0 2 4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(b) Mean +/− λ1SFPC1 

ln(particle size) [ln(mm)]

P
S

D

−2 0 2 4
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(c) Mean +/− λ2SFPC2 
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Fig. 1 Particle-size densities at the Lauswiesen site. Panel (a): Data considered in [4] (data were
smoothed with a set of m = 70 Bernstein polynomials), represented according to the elevation of
the corresponding soil sample. Panels (b) to (d): Plot of the mean (black line) ± the first SFPCs
(a blue line indicates the sign +, a red line indicates the sign −), powered by the corresponding
standard deviation, i.e., m̂±

√
λ i · ei, i = 1, ...,4

We estimate the zero-lag covariance operator through the empirical estima-
tor Ŝ(·) = 1

n ∑
n
i=1〈xsi − m̂, ·〉 · (xsi − m̂), with xsi the observation at si ∈ D and

m̂ = 1
n ∑

n
i=1 xsi the sample mean. We numerically compute the eigen-decomposition

of Ŝ and retain K = 4 simplicial functional principal components (SFPCs), that to-
gether explain 97.4% of the data variability. In this regard, note that the proportion
of the total variability explained by the k-th SFPC can be estimated through the ra-
tio between the k-th eigenvalue and the sum of all the eigenvalues, i.e., λk/∑

K
j=1 λ j

(as in multivariate principal component analysis). Interpretations of the SFPCs can
be based on Fig. 1(b) to (e), that display the plots of the mean PSD perturbed by
plus/minus the retained SFPCs scaled according to the corresponding standard de-
viations (i.e., m̂±

√
λ i · ei, i = 1, ...,4). In particular, the first two SFPCs provide

information about the position of the mode and the modality of the PSD: high (low)
scores along the first SFPC are associated with a larger (smaller) mode and mass
concentration around it, whereas high (low) scores along the second SFPC are in-
dicative of bimodal (unimodal) distributions.

Having estimated the multivariate cross-variogram structure of the scores along
these SFPCs, we perform conditional Gaussian cosimulation of the fields of scores.
Fig. 2(b) reports an example of conditional simulations over a fine grid along the
vertical direction. This type of realizations is key in field applications to quantify the
uncertainty associated with point-wise predictions, such as those provided by Krig-
ing [4]. Kriging yields the best linear unbiased predictor of Xs0 , that in the Gaus-
sian case coincides with an estimate of the conditional expectation of Xs0 given
the observations, i.e. E[Xs0 |Xs1 , ...,Xsn ]. Even though Kriging provides the best
prediction (in the mean square sense), Kriging maps appear smoother than actual
realizations of the field (compare Fig. 2(a) and Fig. 2(b)). In this sense, conditional
simulation is relevant to reproduce the actual spatial variability of the phenomenon,
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to be employed in a Monte Carlo setting for the characterization of the spatial dis-
tribution of aquifer properties (see Fig. 2(c) and (d)).

(a) Kriged field
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(b) Realization of the conditional field
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(c) Simulation at Z=306.0 m a.s.l.
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(d) Simulation at Z=303.0 m a.s.l.
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Fig. 2 Kriged field and conditional realizations. Panel (a): Kriging estimation over a grid along
the vertical direction; black lines indicate predictions at elevations 303.0 and 306.0 m a.s.l.. Panel
(b): a conditional realization on the same grid considered in panel (a). Panels (c) and (d): Kriging
estimation at elevations 303.0 and 306.0 m a.s.l. (black line) and a sample of 1000 conditional
simulations at the same sites (grey lines)
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