In the recent years, increasing attention has been posed towards enhancing the sustainability of manufacturing processes by reducing the consumption of resources and key materials, the energy consumption and the environmental footprint, while also increasing companies’ competitiveness in global market contexts. De- and remanufacturing includes the set of technologies/systems, tools and knowledge-based methods to recover and reuse functions and materials from industrial waste and post-consumer products, under a Circular Economy perspective. This new paradigm can potentially support the sustainability challenges in strategic manufacturing sectors, such as aeronautics, automotive, electronics, consumer goods, and mechatronics. A new generation of smart de- and remanufacturing systems showing higher levels of automation, flexibility and adaptability to changing material mixtures and values is emerging and there is a need for systematizing the existing approaches to support their operations. Such innovative de- and remanufacturing system design, management and control approaches as well as advanced technological enablers have a key role to support the Circular Economy paradigm. This paper revises system level problems, methods and tools to support this paradigm and highlights the main challenges and opportunities towards a new generation of advanced de- and remanufacturing systems.

Design, management and control of demanufacturing and remanufacturing systems

Tolio, Tullio;Colledani, Marcello;GUSCHINSKAYA BATTAIA, OLGA;
2017-01-01

Abstract

In the recent years, increasing attention has been posed towards enhancing the sustainability of manufacturing processes by reducing the consumption of resources and key materials, the energy consumption and the environmental footprint, while also increasing companies’ competitiveness in global market contexts. De- and remanufacturing includes the set of technologies/systems, tools and knowledge-based methods to recover and reuse functions and materials from industrial waste and post-consumer products, under a Circular Economy perspective. This new paradigm can potentially support the sustainability challenges in strategic manufacturing sectors, such as aeronautics, automotive, electronics, consumer goods, and mechatronics. A new generation of smart de- and remanufacturing systems showing higher levels of automation, flexibility and adaptability to changing material mixtures and values is emerging and there is a need for systematizing the existing approaches to support their operations. Such innovative de- and remanufacturing system design, management and control approaches as well as advanced technological enablers have a key role to support the Circular Economy paradigm. This paper revises system level problems, methods and tools to support this paradigm and highlights the main challenges and opportunities towards a new generation of advanced de- and remanufacturing systems.
2017
Circular Economy; Sustainable development; System; Mechanical Engineering; Industrial and Manufacturing Engineering
File in questo prodotto:
File Dimensione Formato  
Design, management and control of demanufacturing and remanufacturing systems.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1044188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 160
  • ???jsp.display-item.citation.isi??? 113
social impact