In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.
Efficient model reduction of parametrized systems by matrix discrete empirical interpolation
Manzoni, Andrea;
2015-01-01
Abstract
In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.File | Dimensione | Formato | |
---|---|---|---|
11311-1041119_Manzoni.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.