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Abstract

In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for
the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial
differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online
solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily
available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation
method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient
approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and
purely algebraic way. We propose different strategies to combine MDEIM with a state approximation
resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori
error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic
and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is
demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering
contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

Keywords: Model Order Reduction, Discrete Empirical Interpolation, System Approximation, Proper
Orthogonal Decomposition, Reduced Basis Methods.

1. Introduction

Projection-based model reduction techniques reduce the computational cost associated with the solution
of parameter-dependent high-fidelity models by restricting the solution space to a subspace of much smaller
dimension. Such techniques have been successfully applied in domains ranging from computational fluid
mechanics [1, 2, 3], aeroelasticity [4, 5] and computational haemodynamics [6] to circuit simulation [7],
finance [8] and acoustics [9]. The low cost associated with the solution of reduced order models (ROMs) has
in turn allowed their use to accelerate real-time analysis [5, 10], PDE-constrained optimization [6, 11, 12, 13,
14, 15] and uncertainty quantification [16, 17] problems. In all these cases – and more generally whenever
interested to solve parametrized PDEs many times, for several parametric instances – a suitable offline/online
stratagem becomes mandatory to gain a strong computational speedup. Indeed, expensive computations
should be carried out in the offline phase, thus leading to a much cheaper online phase. In this context
however, the (possibly) complex parametric dependence of the discretized PDE operators have a major
impact on the computational efficiency. In the present work, we develop an offline/online procedure that
alleviates the computational burden associated with such complex (and in particular nonaffine) parametric
dependencies in the case of linear PDEs. To this end, an affine approximation of the linear operators is
developed in the offline phase, leading to inexpensive evaluation of the approximated operators online. These
latter are then computed in a general, black-box, purely algebraic way.
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1.1. A key problem: dealing with nonaffinities in parametrized ROMs

For the sake of illustration, we consider a linear parametrized dynamical system arising from the spatial
discretization of a linear parabolic PDE such as the unsteady advection-diffusion equation

(1) M(t;µ)
duh
dt

+ A(t;µ)uh = g(t;µ),

where uh = uh(t;µ), g ∈ Rn, A ∈ Rn×n is the matrix encoding the differential operator, M ∈ Rn×n is
the mass matrix, while µ ∈ D ⊂ RP denotes the parameter vector. For the sake of completeness, we also
consider in this paper the case of a linear parametrized system arising from the spatial discretization of a
linear elliptic PDE such as the Helmholtz equation

(2) A(µ)uh = g(µ).

Thoroughout the paper, we will refer to problems (1) and (2) as high-fidelity or full-order models (FOMs).
The idea of a projection-based ROM is to approximate the unknown uh in a basis V ∈ Rn×N of reduced
dimension N � n, i.e. uh(t;µ) ≈ VuN (t;µ),

and to enforce the orthogonality of the residual to a test subspace spanned by a suitable basis W ∈ Rn×N

WT
(
M(t;µ)V

duN
dt

+ A(t;µ)VuN − g(t;µ)
)

= 0.

This results in a Petrov-Galerkin projection. Thus, referring for the sake of generality to problem (1), by
means of a ROM we seek uN (t;µ) ∈ RN such that

(3) MN (t;µ)
duN
dt

+ AN (t;µ)uN = gN (t;µ),

where the reduced matrices and vectors are given by

MN (t;µ) = WTM(t;µ)V, AN (t;µ) = WTA(t;µ)V, gN (t;µ) = WTg(t;µ).

The efficient evaluation of the reduced matrices and vectors as time and parameters vary is still one of
the main challenges in order to achieve efficient offline construction and online resolution of the ROM.

In the particular case that the system matrices (resp. vectors) can be expressed as an affine combination
of constant matrices (resp. vectors) weighted by suitable parameter dependent coefficients, each term of the
weighted sum can be projected offline onto the reduced basis (RB) space spanned by V. For instance, let
us assume that the matrix A(t;µ) admits an affine decomposition

(4) A(t;µ) =

M∑

q=1

θq(t;µ)Aq.

Then

AN (t;µ) = WTA(t;µ)V =
M∑

q=1

θq(t;µ) WTAqV,

where θq : [0, T ] × D 7→ R and Aq ∈ Rn×n are given functions and matrices, respectively, for q = 1, . . . , M . 
Since the reduced matrices WT AqV ∈ RN×N can be precomputed and stored offline, the online construction 
of the ROM for a given (t; µ) is fast and efficient as long as M � n.

On the other hand, if A(t; µ) is not affine – that is, if it does not feature an affine decomposition (4)
– this computational strategy breaks down. In this case, the construction of the ROM for a given (t, µ)
requires first to assemble the full-order matrices and vectors and then to project them onto the reduced 
space, thus entailing a computational complexity which scales with the dimension of the large scale system. 
Unfortunately, many applications of interest feature a non-affine dependency with respect to time and/or



parameters. This is the case, for instance, when dealing with parametrized shape deformations, multi-physics 
problems and nonlinear PDEs linearized around a steady-state. Furthermore, even if the problem admits 
an affine decomposition, exploiting this decomposition might require intrusive changes to the high-fidelity 
model implementation (see, e.g., [18]), or even be impossible when using black-box high-fidelity solvers. As 
a matter of fact, we would like to reuse during the offline stage a computational code already designed for 
the solution of the high-fidelity problem at hand, and then to build a ROM by relying on the minimum 
amount of algebraic structures of the full-order model. In order to recover the affine structure (4) in those 
cases where the operator A(t; µ) is nonaffine (or (4) is not readily available), we must introduce a further 
level of reduction, called hyper-reduction or system approximation [19, 2], employing suitable techniques 
which are briefly reviewed in the following section.

1.2. The content of this paper and other existing approaches

A first class of approaches aims at approximating directly the parametrized reduced operator AN (t; µ). 
Among them, we mention those based on interpolation on appropriate matrix manifolds [20, 21, 22]. Because 
they do not require accessing the underlying full operator A(t; µ) online, these approaches are amenable 
to a fully online phase that completely bypasses the high-fidelity code (see, e.g., [12] for an example of 
application in aeronautics). However, approximating the full operator instead of its reduced counterpart is 
preferable when a greedy procedure (see, e.g., [18]) is employed to construct a parametrically robust global 
reduced basis. Indeed, approximating the reduced operators does not allow for an affine reconstruction of the 
underlying full operators, which is however required to enable a fast evaluation of the norm of the residual 
by an offline-online splitting. In that context, accessing the underlying full operators becomes necessary, as 
shown in [15]. As such, we will only consider computational strategies based on the approximation of the 
full operator A(t; µ) here.

In a second class of approaches, the approximation of the full operator takes place prior to its reduction 
by Petrov-Galerkin projection. This is the case in the Empirical Interpolation Method (EIM) [23, 24] (as well 
as in the ‘best point’ interpolation method [25]) which was applied, e.g., in [6] to shape parameterization 
and in [26] to operator interpolation. Its discrete variant, the Discrete Empirical Interpolation Method 
(DEIM) [27] was originally developed to efficiently deal with nonlinear problems, but was then also applied 
to the approximation of nonaffinely parametrized linear operators (see, e.g., [28]). However, in all these cases 
an extensive, problem-specific pre-processing phase has to be performed in order to cast the parametrized 
operator A(t; µ) in a form suitable for the application of EIM or DEIM, see e.g. [25, 6, 28].

It is worth mentioning that in the nonlinear context, an affine approximation of the Jacobian matrix of 
the differential operator is often obtained as a byproduct of the DEIM (or gappy POD [29]) approximation 
of the nonlinear residual vector, see e.g. [27, 2, 30]. In our context, this is equivalent to seek an affine 
approximation of either A(t; µ)uh or A(t; µ)VuN . In the first case the system approximation is performed 
prior or simultaneously to the reduced space construction, while in the second case it is performed at a later 
stage [31, 2]. Although this approach turns out to be less intrusive than the previous one, it has two major 
drawbacks: it lacks of accuracy [32] and does not preserve the structure of the original matrix [30].

In this paper we rely instead on the recently proposed [33, 34, 35, 30] ‘Matrix version’ of DEIM (MDEIM) 
to directly approximate the full operator. Thanks to MDEIM, we show how to deal with complex physical 
and geometrical parametrizations in a black-box, efficient and purely algebraic way. As MDEIM requires the 
ability to evaluate some entries of the full operator A(t; µ) in the online phase, we also show how to perform 
efficiently this operation when A(t; µ) results from a finite element discretization of the PDE operator. 
Moreover, an efficient implementation of the MDEIM offline procedure is proposed.

We then exploit MDEIM to build suitable ROMs for static and dynamical systems of the form (2) and 
(1), respectively. In the former case, we embed MDEIM into reduced basis greedy and POD-based ROMs 
following a system approximation then state-space reduction approach. In the case of dynamical systems, we 
instead propose a simultaneous system approximation and state-space reduction paradigm where a reduced 
basis V and an affine approximation of the system matrices are progressively built by means of POD and 
MDEIM, respectively. Further, new efficiently computable a posteriori error bounds taking into account the 
MDEIM error are developed in the case of parametrized elliptic and parabolic problems.



Finally, MDEIM is shown to be an efficient tool for accelerating simulations in two computationally-
intensive classes of problems occurring in engineering contexts: PDE-constrained (shape) optimization and
parametrized coupled problems. The paper is structured as follows. Two model problems dealing with
acoustics and heat transfer, which will be used throughout the paper to showcase the proposed methodology,
are described in Section 2. The DEIM approach is briefly reviewed in Section 3, together with its matrix
version introduced for a generic parametrized linear operator. The MDEIM is then applied to parametrized
elliptic and parabolic PDEs in Sections 4 and 6, respectively. Numerical results are presented in Sections 5
and 7. Finally, conclusions are offered in Section 8.

2. Model problems

In this section we introduce two relevant examples of problems which can be cast in the form (1) and (2):
the propagation of a pressure wave into an acoustic horn and the heat transfer for a flow around a circular
cylinder.

2.1. Helmholtz equation on a parametrized domain

Let us consider the propagation of a pressure wave P (x, t) into the acoustic horn illustrated in Fig.
1. Under the assumption of time harmonic waves, the acoustic pressure P can be separated as P (x, t) =
<(p(x)eiωt), where the complex amplitude p(x) satisfies the Helmholtz equation (see e.g. [36, 37]):

(5)

∆p+ κ2p = 0 in Ω
(
iκ+

1

2R

)
p+∇p · n = 0 on Γo

iκp+∇p · n = 2iκA on Γi

∇p · n = 0 on Γh ∪ Γs = Γn.

Here κ = ω/c is the wave number, ω = 2πf the angular frequency and c = 340 cm s−1 the speed of sound.
On the boundary Γi we prescribe a radiation condition which imposes an inner-going wave with amplitude
A = 1 and absorbs the outer-going planar waves. A Neumann boundary condition is imposed on the walls
Γh of the device as well as on the symmetry boundary Γs, while an absorbing condition is imposed on the
far-field boundary Γo defined by the radius R = 1.
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While the first contribute (the dual norm of the residual) admits the usual o✏ine-
online decomposition, the second term, taking into account for system approximation,
still depends on the full-order original and approximated matrices and right-hand
sides. Therefore, a further step combining suitable error bounds for the DEIM ap-
proximation (as those proposed in [6]) is required to obtain an e�ciently computable
a posteriori error estimate.

At the moment, the greedy algorithm for the construction of the reduced basis
is still based on �

N

(µ). The computation of �
m

(µ) is performed only in a post-
processing phase.

4. Shape optimization of an acoustic horn. We study the propagation of
a pressure wave P (x, t) into the acoustic horn illustrated in Fig. 4.1. Under the
assumption of time harmonic waves, the acoustic pressure P can be separated as
P (x, t) = p(x)ei!t, where the complex amplitude p(x) satisfies the Helmholtz equation
(see e.g. [1, 9]):
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Here  = !/c is the wave number, being ! = 2⇡f the angular frequency and c = 340
cm s 1 the speed of sound. On the boundary �

i

we prescribe a radiation condition
which imposes a right-going wave with amplitude A = 1 and which absorbs the left-
going planar waves. A Neumann boundary condition is imposed on the walls of the
device �

h

as well as on the symmetry boundary �
s
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imposed on the far-field boundary �

o
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Fig. 4.1. Acoustic horn domain and boundaries. Background coloring given by <(p) for f =
900Hz.

Let us define X = H1(⌦(µ
g

)) as the space of complex-valued square-integrable
functions with square-integrable gradients. The weak formulation of (4.1) reads: find
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Figure 1: On the left: acoustic horn domain and boundaries (background coloring given by <(p) for f = 900Hz). On the right:
RBF control points (red circles) whose vertical displacement is treated as a parameter.

We consider as a first parameter the frequency f . Moreover, in order to describe different geometrical
configurations of the horn, we introduce a suitable shape parametrization based on Radial Basis Functions 
(RBF) (see e.g. [38]). In particular, we define a set of admissible shapes as the diffeomorphic images Ω(µg)
of the reference domain Ω through a parametrized map F(·; µg) depending on four parameters representing
the vertical displacement of the control points reported in Figure 1; more details about the construction of



such a map can be found, e.g., in [39]. As a result, we end up with a vector µ = [f µg] of five parameters.
The output of interest is the index of reflection intensity (IRI) [36] defined as

J(µ) =

∣∣∣∣
1

|Γi|

∫

Γi

p(µ) dΓ− 1

∣∣∣∣,

which measures the transmission efficiency of the device.
Let us now define X = H1(Ω(µg)) as the space of complex-valued square-integrable functions with

square-integrable gradients. The weak formulation of (5) reads: given µ ∈ D, find p ∈ X such that

(6) a(p, v;µ) = g(v;µ) ∀v ∈ X,

where the bilinear and linear forms a(·, ·;µ) and g(·;µ) are given, respectively, by

(7) a(p, v;µ) =

∫

Ω(µg)

{
∇p · ∇v̄ − κ2pv̄

}
dΩ + iκ

∫

Γo∪Γi

pv̄ dΓ +
1

2R

∫

Γo

pv̄ dΓ,

(8) g(v;µ) = 2iκA

∫

Γi

v̄ dΓ.

We introduce a conforming triangulation Kh = {∆k}nek=1 of the domain Ω and then we discretize problem
(6) by approximating X with a finite element space Xh generated by a set of n piecewise polynomial nodal
basis functions {ϕi}ni=1. We end up with the following linear system of dimension n:

(9) A(µ)ph = g(µ),

where
Aij(µ) = a(ϕj , ϕi;µ), gi(µ) = g(ϕi;µ), 1 ≤ i, j ≤ n.

Our final goal is to use this full-order model, not only to analyze the performance of different geometrical
configurations, but also to find the optimal shape which maximizes the horn transmission efficiency. To this
end, we are required to solve system (9) for many different parameter configurations, a computationally
intensive task which motivates the development of a suitable inexpensive and fast reduced-order model.

2.2. Heat transfer around a circular cylinder

As a second application, we consider a heat transfer problem for a flow around a circular cylinder (see
Figure 2). Since we are interested in a forced-convection problem, the effect of buoyancy and compressibility
are neglected, and therefore only a one-way coupling from the fluid equations to the temperature equation
is considered. In particular, we assume the fluid dynamics to be governed by the unsteady incompressible
Navier-Stokes equations, while its temperature T = T (x, t) is modeled by the following advection-diffusion
equation:

(10)

∂T

∂t
+ v · ∇T − αT∆T = 0 in Ω× (0, tf )

T = 0 in Γd × (0, tf )

T = T2 in Γc × (0, tf )

αT∇T · n = 0 in Γw ∪ Γn × (0, tf )

T (x, 0) = 0 in Ω,

where v = v(x, t) is the fluid velocity (solution of the Navier-Stokes equations), αT is the thermal diffusivity

and T2 ∈ R is given. The problem is parametrized with respect to the Reynolds number (entering in the 
Navier-Stokes equations and thus affecting equation (10) through the velocity field v), the temperature T2

imposed on the cylinder, and the thermal diffusivity, so that µ = [Re T2 αT ].
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Figure 2: Computational domain. The channel dimensions are: length L = 2.2, height H = H1 +H2 with H1 = 0.2, H2 = 0.21.
The cylinder is centered at coordinates (d,H1) with d = 0.2, while its radius is r = 0.05.

Since the problem is highly transport-dominated, we discretize (10) using SUPG stabilized linear finite
elements [40]. We first introduce a triangulation Kh = {∆k}nek=1 of the domain, a suitable finite element
approximation space Xh and a lifting operator to take into account the nonhomogeneous Dirichlet condition.
Then, we end up with the following semi-discrete weak formulation: for all t ∈ (0, tf ], find Th(t) ∈ Xh such
that

(11)

(
∂Th
∂t

+ vh(t;µ) · ∇Th, φ
)

Ω

+
(
αT∇Th,∇φ

)
Ω

+
∑

∆k∈Kh

(
∂Th
∂t

+ vh(t;µ) · ∇Th − αT∆Th, τk(t;µ)vh(t;µ) · ∇φ
)

k

= g(φ; t;µ) ∀φ ∈ Xh.

Here g(·;φ;µ) encodes the action of the nonhomogeneous Dirichlet condition, while the stabilization param-
eter τk(t;µ) is defined as in [41]

(12) τk(t;µ) =

(
4

(∆t)2
+ vh(t;µ) ·Gkvh(t;µ) + α2

TGk : Gk

)−1/2

,

where Gk denotes the covariant metric tensor of the computational domain (see, e.g., [41] for its definition).
At the algebraic level, problem (11) leads to the following discrete dynamical system:

(13) M(t;µ)
dTh

dt
+ A(t;µ)Th = g(t;µ).

Given a value of the parameters µ, solving (13) requires to first solve a suitable full-order approximation of
the unsteady Navier-Stokes equations to evaluate the transport field vh(t;µ), which is then inserted in (13) to
obtain the temperature field Th(t;µ). Repeating these operations for many different system configurations
requires a considerable computational effort, thus motivating the need for model order reduction. However,
since the matrices A(t;µ), M(t;µ) and the vector g(t;µ) feature a highly nonaffine and implicit (through
vh(t;µ)) dependence with respect to the parameters, any model reduction strategy would be ineffective
without an accompanying system approximation technique.

3. Parametrized matrix interpolation

After a brief review of the basic features of the discrete empirical interpolation method, we describe in 
this section a very efficient procedure to deal with the interpolation of parametrized matrices, according 
to the needs outlined in the introduction. Such a procedure will be exploited in the following sections to 
recover an affine structure of parametrized PDE operators in a general, black-box, purely algebraic way.



3.1. Review of DEIM

DEIM [27] is an interpolation technique for the approximation of parameter-dependent functions based
on a greedy selection of interpolation points and a projection over a low-dimensional space. In more details,
DEIM approximates a nonlinear function f : τ ∈ T ⊂ Rp → f(τ) ∈ Rn (here τ could represent parameters
µ, time t or both) by projection onto a low-dimensional subspace spanned by a basis Φ,

f(τ) ≈ fm(τ) = Φθ(τ),

where Φ = [φ1, . . . ,φM ] ∈ Rn×M and θ(τ) ∈ RM is the corresponding vector of coefficients, with M � n.
Let us recall how DEIM selects offline the basis Φ and computes online the coefficients θ(τ).

(i) The method starts by constructing a set of snapshots obtained by sampling f(τ) at values τi, i =
1, . . . , ns. Then, POD is applied to extract a basis from the snapshots, i.e.

[φ1, . . . ,φM ] = POD( [f(τ1), . . . , f(τns) ], εPOD),

where εPOD is a prescribed tolerance. The POD procedure is summarized in Algorithm 1.

(ii) Given a new τ , in order to compute the coefficients vector θ(τ), DEIM imposes interpolation conditions
at some properly selected entries I ⊂ {1, · · · , n}, |I| = M , of the vector f(τ):

(14) ΦI θ(τ) = fI(τ),

where ΦI ∈ RM×M is the matrix formed by the I rows of Φ. As a result,

(15) fm(τ) = ΦΦ−1
I fI(τ).

(iii) The indices I are iteratively selected from the basis Φ using a greedy procedure which minimizes the
interpolation error over the snapshots set measured in the infinity norm (see Algorithm 2 for further
details).

Input: Set of snapshots Λ = [f1, . . . , fns ] ∈ Rn×ns , tolerance εPOD

Output: Orthonormal basis Φ ∈ Rn×M

1. compute thin singular value decomposition Λ = UΣZT where

U = [u1 · · · uns ] ∈ Rn×ns , Σ = diag(σ1, . . . , σns) ∈ Rns×ns ,

UTU = I and σ1 ≥ σ2 ≥ . . . σns ≥ 0
2. define M as the minimum integer such that

I(M) =

∑M
i=1 σ

2
i∑ns

i=1 σ
2
i

≥ 1− ε2POD

3. form the basis Φ = [u1 · · · uM ]

Algorithm 1: POD procedure. Given a snapshots matrix Λ ∈ Rn×ns and a tolerance εPOD > 0, the
algorithm returns an orthonormal basis Φ ∈ Rn×M . Alternatively, one can provide the (a priori fixed)
dimension M ≤ ns of the basis rather than εPOD, and skip line 2.

It is useful to recall that the error between f and its DEIM approximation fm can be bounded as follows
(see e.g. [27] for the complete derivation)

(16) ‖f(τ) − fm(τ)‖2 ≤ ‖ΦI−1‖2 ‖(I − ΦΦT )f(τ)‖2;



Input: Set of snapshots Λ = [f(τ1), . . . , f(τns) ] ∈ Rn×ns , tolerance εPOD

Output: Basis Φ ∈ Rn×M , set of indices I ∈ RM

1. [φ1 · · ·φM ] = POD(Λ, εPOD)
2. I = arg max{1,...,n} |φ1|
3. for k = 2 : M do
4. compute the residual: r = φk −ΦΦ−1

I φk,I
5. i = arg max{1,...,n} |r|
6. I = I ∪ i
7. Φ = [Φ φk]
8. end for

Algorithm 2: DEIM algorithm (as originally proposed in [27]). Given a vector v ∈ Rn, the arg max
operation returns the index i ∈ {1, . . . , n} where the maximum entry occurs. Here, |v| denotes the vector
of components [ |v1| · · · |vn| ]T .

the second factor in the right-hand side of (16) can be approximated as

(17) ‖(I−ΦΦT )f(τ)‖2 ≈ σM+1,

where σM+1 is the first discarded singular value in the POD procedure. This approximation holds for any
parameter τ provided an appropriate sampling of the snapshots in the parameter space has been carried
out. In that case, the predictive projection error ‖(I−ΦΦT )f(τ)‖2 is comparable to the training projection
error σM+1. We will employ this error bound in the following sections when dealing with the construction
of a ROM for the parametrized problems at hand.

Remark 1. We also remark that the interpolation condition (14) can be generalized to the case where more
sample indices (|I| > M) than basis functions are considered, leading to a gappy POD reconstruction [29, 2]:

(18) θ(τ) = arg min
x∈RM

‖fI(τ)−ΦI x‖2.

The solution of the least-squares problem (18) yields fm(τ) = ΦΦ+
I fI(τ), where Φ+

I is the Moore-Penrose
pseudoinverse of the matrix ΦI .

3.2. Shortcomings of DEIM for nonaffinely parametrized PDEs
Employing DEIM (as well as EIM) to deal with nonaffinely parametrized PDEs is not an easy task, as it

usually entails an extensive work on the continuous formulation of the problem, as well as intrusive changes
to its high-fidelity implementation, very often preventing the use of existing solvers. Moreover, employing
this kind of techniques to approximate parametrized functions accounting for geometrical deformations
and/or physical properties easily leads to a very large number of affine terms. For the sake of illustration,
we provide here two simple examples.

Following the notation of Section 2.1, we first consider a matrix K(τ) ∈ Rn×n arising from the finite
element discretization of a diffusion-reaction equation with variable coefficients α : Ω × T → R and γ :
Ω× T → R,

(19) Kij(τ) =

∫

Ω

α(x; τ)∇ϕj · ∇ϕi dΩ +

∫

Ω

γ(x; τ)ϕj ϕi dΩ, 1 ≤ i, j ≤ n.

If α(x; τ) and γ(x; τ) are nonaffinely parametrized with respect to x and τ , we can generate an approximate
affine expansion of K(τ) as

(20) Kij(τ) ≈
∫

Ω

αm(x; τ)∇ϕj · ∇ϕi dΩ +

∫

Ω

γm(x; τ)ϕj ϕi dΩ

=

Mα∑

q=1

θαq (τ)

∫

Ω

φαq (x)∇ϕj · ∇ϕi dΩ +

Mγ∑

q=1

θγq (τ)

∫

Ω

φγq (x)ϕj ϕi dΩ,



where

αm(x; τ) =

Mα∑

q=1

θαq (τ)φαq (x), γm(x; τ) =

Mγ∑

q=1

θγq (τ)φγq (x)

are DEIM approximations of α(x; τ) and γ(x; τ), respectively. In practice, they are computed by applying
DEIM to the vector functions α(τ), γ(τ) obtained by evaluating α(·; τ), γ(·; τ) in the finite element quadra-
ture points. This way of proceeding is extremely problem-specific and often inefficient, as it completely
ignores the possible common dependence from τ of the two coefficients. For instance, if γ = α we would still
have 2Mα, rather than only Mα, affine terms.

The procedure is even more involved in the case of geometrical parametrizations, which require to first
pull back the weak formulation of the original problem to a reference configuration, and then perform DEIM
(or EIM) on each term of the tensors accounting for the geometrical deformation. Let us consider for instance
the matrix

(21) Kij(τ) =

∫

Ω(τ)

∇ϕj · ∇ϕi dΩ, 1 ≤ i, j ≤ n

resulting from the finite element discretization of the Laplace operator on a parametrized domain Ω(τ) ⊂ Rd.
This latter is obtained from a reference configuration Ω̃ through a parametric map F : Ω̃ × T → Rd such
that Ω(τ) = F(Ω̃; τ). By operating a suitable change of variables, we can rewrite the integral in (21) as

Kij(τ) =

∫

Ω̃

ν(x; τ)∇ϕj · ∇ϕi dΩ,

where ν(x; τ) = (∇xF(x; τ))−1(∇xF(x; τ))−T |det(∇xF(x; τ))| is a d × d matrix, usually nonlinearly para-
metrized with respect to τ . In order to obtain an affine expression for K(τ), each component of ν has to be
approximated by DEIM, yielding

Kij(τ) ≈
d∑

k,l=1

∫

Ω̃

(νm(x; τ))k,l∇ϕj · ∇ϕi dΩ =
d∑

k,l=1

Mkl∑

q=1

θklq (τ)

∫

Ω̃

φklq (x)∇ϕj · ∇ϕi dΩ.

Therefore, to obtain an affine approximation of K(τ), we are first required to approximate by DEIM (at most)

d2 functions and then to assemble
∑d
k,l=1Mkl τ -independent matrices. This, however, requires knowledge of

the analytical expression of the geometric map and its gradient, as well as an ad-hoc implementation, thus
resulting in several intrusive operations. Indeed, as long as the type of parametrization changes or another
differential operator is considered, a (conceptually similar but practically) different procedure has to be put
in place. We refer to, e.g., [25, 42, 6, 28] for more detailed examples of DEIM and EIM applications in this
context. In order to overcome these shortcomings, we turn to a purely algebraic perspective.

3.3. Matrix DEIM

As suggested in [33, 30, 35, 34], we can use DEIM to address the following problem: given a parametrized
matrix K(τ) : T 7→ Rn×n, find M � n functions θq : T 7→ R and parameter-independent matrices Kq ∈
Rn×n, 1 ≤ q ≤M , such that

(22) K(τ) ≈ Km(τ) =

M∑

q=1

θq(τ) Kq.

The offline procedure consists of two main steps. First we express the matrix K(τ) in vector format by

defining k(τ) = vec(K(τ)) ∈ Rn2

, that is, k(τ) is obtained by stacking the columns of K(τ), see, e.g., [43,
Chap. 1]. Hence, (22) can be reformulated as: find {Φ,θ(τ)} such that

(23) k(τ) ≈ km(τ) = Φθ(τ), 



where Φ ∈ Rn2×M is a τ -independent basis and θ(τ) ∈ RM the corresponding coefficients vector, that is

Φ = [ vec(K1), . . . , vec(KM ) ] , θ(τ) = [θ1(τ), . . . , θM (τ)]T .

Then, we apply DEIM to a set of snapshots Λ = [k(τ1), . . . ,k(τns)] in order to obtain the basis Φ and the
interpolation indices I ⊂ {1, · · · , n2}.

During the online phase, given a new τ ∈ T , we can compute km(τ) as

(24) km(τ) = Φθ(τ), with θ(τ) = Φ−1
I kI(τ).

Then, reversing the vec(·) operation, we get the MDEIM approximation Km(τ) to the matrix K(τ). We
point out that, for the sake of model order reduction, the crucial step in the online evaluation of Km(τ) is
the computation of kI(τ). The following subsection is devoted to the illustration of the details related with
this procedure.

Remark 2. In the finite element context, the entire procedure is implemented using a suitable sparse format
for the matrix K(τ). Therefore, the actual dimension of the vectorized matrices is nz rather than n2, where
nz denotes the number of nonzero entries of the matrix K(τ). As such, one could reuse standard POD and
DEIM routines for generating the POD basis Φ and the interpolation indices I. However, depending on
the software which is used and the actual implementation, these operations can be quite demanding in terms
of time and memory resources (see also [32]). For instance, using the compressed-column storage format
[43] available in MATLAB R©, computing the singular value decomposition of the sparse snapshots matrix
Λ is quite inefficient. To this end, it is more convenient to define an auxiliary, dense snapshots matrix
Λ̃ ∈ Rnz×M such that

Λ̃i,j = ΛZ(i),j , i = 1, . . . , nz, j = 1, . . . ,M,

where Z ⊂ {1, . . . , n2} is the set of indices corresponding to the rows of the matrix Λ having at least a

nonzero entry and nz = |Z|. Running standard POD and DEIM routines on Λ̃ we obtain a dense POD

basis Φ̃ ∈ Rnz×M and a set of interpolation indices Ĩ ⊂ {1, . . . , nz}. Then, the nonzero entries of the sparse

POD basis Φ ∈ Rn2×M are given by

ΦZ(i),j = Φ̃i,j , i = 1, . . . , nz, j = 1, . . . ,M,

while I = Z(Ĩ) ⊂ {1, . . . , n2}. The complete MATLAB implementation of the POD and MDEIM routines
used in this paper are provided in the supplementary materials.

Remark 3. A similar Matrix EIM (MEIM) procedure could have been obtained by employing EIM rather 
than DEIM to approximate the vectorized matrix k(τ). The main difference lies in the selection of the basis, 
based on a greedy algorithm rather than on the POD technique. See, e.g., [44] where a “multi-component 
EIM” has been proposed and analyzed.

3.4. Efficient evaluation of kI (τ) in the finite element context

The evaluation of Km(τ) requires the computation of the values of the entries I of the vectorized matrix 
k(τ). If the matrix K(τ ) results from the discretization of a PDE operator, the efficient implementation of
this operation requires ad-hoc techniques depending on the underlying high-fidelity approximation. Here,
we propose a practical implementation when relying on the finite element method. In this context, efficiency 
is achieved thanks to the local support of the basis functions, which delivers the usual element-wise approach
for the matrix assembly. Indeed, to compute kI (τ), we can reuse the available high-fidelity matrix assem-
blers by simply restricting the loop over the elements to those elements which provide a nonzero contribution
to the entries I of k(τ). This requires to perform some pre-processing operations in the offline phase (once 
and for all). Starting from the data structures defining a finite element mesh (i.e. nodes, (internal) elements
and boundary elements), we need to:
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Figure 3: Reduced mesh concept in the case of P1 finite elements. On the left: sparsity pattern of the vectorized matrix K;
blue crosses identify the nonzero entries, while the red boxes correspond to the DEIM entries I. In the middle: red boxes
correspond to the reduced dofs (in matrix format). On the right: underlying FE mesh with red circles/triangles denoting the
reduced dofs/elements and green lines corresponding to the reduced boundaries.

1. detect the reduced degrees of freedom (dofs): to each index i ∈ I in the vector format corresponds a
pair of row-column indexes (l, j) ∈ I × J in the matrix format (with I, J ⊂ {1, · · · , n}); we define the
reduced dofs as the union of the sets I and J .

2. define the reduced nodes of the mesh as the set of nodes associated to the reduced dofs (in the case
of vectorial problems, we could have more than one reduced dof corresponding to the same reduced
node).

3. detect the reduced elements of the mesh, which are defined as the elements containing at least one re-
duced node; similarly define the reduced boundary elements as the set of boundary elements containing
at least one reduced node.

These new data structures identify the reduced mesh (see Fig. 3), also called reduced integration domain [19].
Once the reduced mesh has been computed and stored in the offline phase, in the online phase we just have
to compute the entries of the matrix K(τ) corresponding to the reduced elements. As anticipated, this
operation can be performed at very low cost by exploiting the same assembler routine used for the high-
fidelity simulations. The resulting matrix K̂(τ) has still dimension n×n, but it is extremely sparse since only
the entries associated to the reduced elements are actually nonzero. Then, we obtain kI(τ) by vectorizing

K̂(τ) and extracting the entries I, i.e.

kI(τ) =
(
vec(K̂(τ))

)
I .

Given kI (τ), we can finally compute θ(τ) and thus km(τ) by (24).

Remark 4. In the context of the finite element method, an unassembled variant of DEIM was developed 
in [45, 46, 28]. The Unassembled DEIM (UDEIM) differs from the DEIM in the sense that unassembled 
quantities are approximated. This results in a larger number of rows in the vector-valued function approx-
imated by UDEIM but, when a reduced node is selected, only one attached reduced element is associated, 
resulting in a sparser reduced mesh in the online phase. A detailed comparison between DEIM and UDEIM 
is reported in [28]. The main drawbacks associated with the UDEIM are (i) the larger dimension of vectors 
and matrices one has to deal with during the offline stage, and (ii) possible substantive modifications to 
the original high-fidelity code which are required to return unassembled quantities associated with vectors or 
matrices, rendering it less amenable to black-box approaches. Hence, DEIM is preferred in the present paper, 
but all the developments would be equally applicable with UDEIM.



3.5. Preservation of matrix properties

We finally demonstrate some properties fulfilled by the reduced matrix Km(τ) with respect to the
corresponding original matrix K(τ). First of all, thanks to a general result of perturbation theory of
eigenvalue problems, the singular values of the reduced matrix approach the singular values of the original
matrix as m increases. This is essentially ensured by Weyl-Mirsky theorem (see, e.g., [47]) for a general
nonsingular matrix: if σi(τ), σmi (τ) for 1, . . . , n denote the singular values of K(τ) and Km(τ), respectively,
then

(25) |σi(τ)− σmi (τ)| ≤ ‖K(τ)−Km(τ)‖2.

Further, the matrix error ‖K(τ)−Km(τ)‖2 can be bounded as follows

(26) ‖K(τ)−Km(τ)‖2 ≤ ‖K(τ)−Km(τ)‖F = ‖k(τ)− km(τ)‖2 ≤ ‖Φ−1
I ‖2 ‖(I−ΦΦT )k(τ)‖2

where ‖ · ‖F denotes the Frobenius norm. The first term ‖Φ−1
I ‖2 does not depend on K(τ), and thus can

be computed just once for all τ ∈ T . On the other hand, the second term depends on K(τ) and therefore
changes for each new τ ∈ T , thus being too expensive to be computed. Nevertheless, a good approximation
for this quantity is given by the first discarded singular value in the POD basis computation, i.e.

‖(I−ΦΦT )k(τ)‖2 ≈ σM+1.

As already noted in Sect. 3.1, this approximation holds for any τ provided that an appropriate sampling of
the parameter domain has been performed to construct Φ.

While possible symmetry of the original matrix is automatically inherited by its approximation, this is
not the case of positive definiteness. Although the relation (25) between the singular values of K(τ) and
Km(τ) ensures that the spectra of these two matrices are close to each other, the positivity of the reduced
matrix could be properly enforced (if not automatically satisfied) for those cases requiring this assumption
to be fulfilled. For instance, in [30] the authors propose to augment the least-squares problem (18) with a
generalized linear constraint:

(27) θ(τ) = arg min
x∈RM

‖kI(τ)−ΦI x‖2 subject to
M∑

q=1

xqV
TKqV > 0,

where M > 0 denotes the positive definiteness of a matrix M. The generalized linear constraint is a classic
linear matrix inequality in the variable x that leads to a convex optimization problem. In the numerical
experiments reported in [30] the unconstrained solution always satisfies the coercivity condition. In fact,
this is also confirmed by our numerical tests. An alternative approach would be to perform the interpolation
on the manifold of symmetric positive definite (SPD) matrices directly. This guarantees that the resulting
matrix is itself SPD. This approach is followed for instance in [20], when dealing with the interpolation of
reduced matrices arising in structural mechanics. However, when applied to full-order matrices this approach
is no more viable, since it involves the computation of matrix logarithm and exponential, which destroy the
sparsity pattern of the original matrix.

More generally, in the non-symmetric case, we have observed numerically that the MDEIM approximation
preserves the non-singularity of the full operator. This observation is very important, as it supports the
derivation of the a posteriori error bound in Section 4.2.

4. Hyper-reduction of parametrized elliptic equations

Let us consider the linear, stationary version of problem (1): find uh ∈ Rn such that

(28) A(µ) uh = g(µ),



resulting for instance from the finite element discretization of an elliptic problem, such as the one of Sec-
tion 2.1. We assume the matrix A(µ) ∈ Rn×n to be nonsingular for all µ ∈ D, so that

(29) β(µ) := σmin(X−
1
2 A(µ)X−

1
2 ) > 0 ∀µ ∈ D,

where β(µ) denotes the minimum generalized singular value of the matrix A(µ) with respect to a symmetric
positive definite matrix X ∈ Rn×n defining a suitable vectorial norm for the solution. For instance, in the
case of second-order elliptic problems the matrix X results from the discretization of the H1(Ω) inner
product. Note that in the continuous setting, β(µ) is nothing but the inf-sup constant of the bilinear form
associated to the matrix A(µ).

When considering the corresponding ROM, we seek uN ∈ RN such that

(30) AN (µ) uN = gN (µ).

Our goal is to efficiently evaluate (i.e. with complexity independent of n) the reduced operators AN (µ) =
WTA(µ)V, gN (µ) = WTg(µ) when A(µ) and g(µ) are nonaffine functions of µ. Thanks to MDEIM, we
can approximate A(µ) as

(31) A(µ) ≈ Am(µ) =

Ma∑

q=1

θaq (µ) Aq, so that AN (µ) ≈ Am
N (µ) =

Ma∑

q=1

θaq (µ) Aq
N .

Here Aq
N = WTAqV ∈ RN×N , q = 1, . . . ,Ma, are precomputable matrices of small dimension. The

corresponding weights θa(µ) = [θa1(µ) · · · θaMa
(µ)] are given by

θa(µ) = (Φa
I)−1aI(µ),

where a(µ) = vec(A(µ)), while Φa ∈ Rn2×Ma is a basis for a(µ). Similarly, we can employ DEIM to obtain
an approximate affine decomposition for the right-hand side,

g(µ) ≈ gm(µ) =

Mg∑

q=1

θgq (µ) gq so that gN (µ) ≈ gmN (µ) =

Mg∑

q=1

θgq (µ) gqN .

Therefore, the ROM with system approximation reads: find umN ∈ RN such that

(32) Am
N (µ) umN = gmN (µ).

Note that (32) can be obtained by Petrov-Galerkin projection using the reduced bases W and V of the
following full-order model with system approximation:

(33) Am(µ) umh = gm(µ).

Following the discussion in Section 3.5, we assume that the approximate matrix Am(µ) is nonsingular for
all µ ∈ D, that is

(34) βm(µ) := σmin(X−
1
2 Am(µ)X−

1
2 ) > 0 ∀µ ∈ D.

4.1. Generation of the reduced spaces

We still need to specify how to construct the reduced spaces, i.e. how to build the left and right bases 
W and V. We first focus on the right basis V, which is responsible for the approximation properties of the 
ROM. The RB-greedy algorithm [18] and POD [48] are probably the two most common approaches for the 
construction of V. We propose to combine them with DEIM and MDEIM techniques following a system 
approximation then state-space reduction approach, whose main steps are reported in Algorithm 3.



(1) compute a set of matrix and vector snapshots of (28);

(2) perform MDEIM and DEIM to obtain affine expansions of matrices and vectors;

(3a) run a greedy procedure to generate the reduced space, using (33) as high-fidelity model, or

(3b) generate a set of snapshots solution of (33), then use POD to generate the reduced space.

Algorithm 3: system approximation then state-space reduction approach for problem (28).

If the greedy algorithm is used, a suitable estimate for the norm of the error between the full and reduced-
order solutions has to be provided. Moreover, the latter can also serve to quantify the solution accuracy in
the online phase, and possibly guide a basis enrichment if the POD approach is employed. We postpone the
derivation of a posteriori error estimates to Section 4.2.

We remark that, in the case when POD is used to build the reduced space, an alternative approach
would be to generate the solution snapshots by solving (28) rather than (33). Since in this case steps (1)
and (3b) would be run simultaneously, we refer to this approach as simultaneous system approximation and
state-space reduction. We will concentrate on this paradigm in Section 6 when dealing with time-dependent
problems.

The whole framework above is independent of the choice of the left basis W. We only mention the two
most popular options: (i) W = V, corresponding to a Galerkin projection, which is known to be optimal for
symmetric positive definite problems; (ii) W = X−1Am(µ)V, corresponding to a least-squares projection
(also called minimum-residual method), which is suitable also for nonsymmetric, indefinite problems [1]. In
the latter case, the matrix X is the one already introduced in (29) and results from the minimization of the
dual norm of the residual ‖Am(µ)VumN − gm(µ)‖2X−1 .

4.2. A posteriori error estimates

In this section, we derive suitable a posteriori estimates for the norm of the error emN (µ) = uh(µ) −
VumN (µ) between the high-fidelity solution (28) and the reduced-order solution (32). To this end, let us split
the error into a contribution em(µ) due to system approximation,

(35) em(µ) = uh(µ)− umh (µ),

and a contribution eN (µ) due to state-space reduction,

(36) eN (µ) = umh (µ)−VumN (µ).

Since we want to find an estimate for the X-norm of the error, it is useful to first define the X−1 vectorial
norm

‖v‖X−1 =
√

(v,X−1v)2 = ‖X− 1
2 v‖2 ∀v ∈ Rn,

and the associated (X,X−1) matrix norm

‖B‖X,X−1 := sup
v∈Rn

‖Bv‖X−1

‖v‖X
= sup

v∈Rn
‖X− 1

2 BX−
1
2 v‖2

‖v‖2
∀B ∈ Rn×n.

Note that the ‖·‖X,X−1 norm is a consistent matrix norm, i.e. ‖Bv‖X−1 ≤ ‖B‖X,X−1 ‖v‖X, for all B ∈ Rn×n, 
v ∈ Rn.

A first error bound can be obtained by estimating separately the two error components and then using
the triangular inequality.



Proposition 1. If Ma ∈ N+ and {θq(µ)}Ma
q=1 are such that the matrix Am(µ) is nonsingular for all µ ∈ D,

then the norm of the error emN (µ) can be bounded by

(37) ‖uh(µ)−VumN (µ)‖X ≤
1

βm(µ)
‖Am(µ)VumN − gm(µ)‖X−1

+
1

β(µ)

(
‖g(µ)− gm(µ)‖X−1 + ‖A(µ)−Am(µ)‖X,X−1‖umh (µ)‖X

)
.

Proof. We first derive an estimate for the error em(µ). From (28) and (33), we have that

A(µ)uh −A(µ)umh + A(µ)umh −Am(µ)umh = g(µ)− gm(µ).

Rearranging the terms we obtain

A(µ)(uh − umh ) = g(µ)− gm(µ) + (Am(µ)−A(µ))umh ,

so that
em(µ) = A−1(µ)

(
g(µ)− gm(µ) + (Am(µ)−A(µ))umh

)
.

Left multiplying by X
1
2 , exploiting the identity X

1
2 X−

1
2 = I at the right-hand side and taking the 2-norm

we then obtain

‖em(µ)‖X ≤ ‖X
1
2 A−1(µ)X

1
2 ‖2
(
‖g(µ)− gm(µ)‖X−1 + ‖(Am(µ)−A(µ))umh (µ)‖X−1

)
,

which yields the second term in (37). The first term is nothing but the usual residual-based a posteriori
error estimate [18] for eN (µ). Indeed, from (33) and (32), we have that

Am(µ)eN (µ) = gm(µ)−Am(µ)VumN ,

and therefore
‖eN (µ)‖X ≤ ‖X

1
2 A−1

m (µ)X
1
2 ‖2 ‖Am(µ)VumN − gm(µ)‖X−1 ,

which provides the first term in (37), using the fact that βm(µ) > 0.

Unfortunately, the error bound (37) is of little practical use, since it requires the computation of the
full-order solution umh (µ) of (33). Nevertheless, we can also prove a similar estimate for the error emN (µ)
which does not involve the full-order solution umh (µ).

Proposition 2. Under the assumptions of Proposition 1, the following estimate holds:

(38) ‖uh(µ)−VumN (µ)‖X ≤ ∆N (µ) + ∆m(µ)

where

∆N (µ) :=
1

β(µ)
‖Am(µ)VuN (µ)− gm(µ)‖X−1 ,(39)

∆m(µ) :=
1

β(µ)

(
‖g(µ)− gm(µ)‖X−1 + ‖A(µ)−Am(µ)‖X,X−1‖VumN (µ)‖X

)
.(40)

Proof. From the problem statement (28) we have that

A(µ)uh −A(µ)VumN = g(µ)−A(µ)VumN

= g(µ)− gm(µ) + gm(µ)−Am(µ)VumN + Am(µ)VumN −A(µ)VumN ,

that is
emN (µ) = A−1(µ)

(
g(µ)− gm(µ) + (Am(µ)−A(µ))VumN + gm(µ)−Am(µ)VumN

)
.

We readily obtain the desired estimate by proceeding as in the proof of Proposition 1.



While the first term in (38) – involving the dual norm of the residual – admits an efficient offline-online
decomposition (see e.g. [18]), the second term – taking into account the system approximation – still depends
on the full-order original and approximated matrices and right-hand sides. However, combining the DEIM
error bounds (16) and (26) we obtain an n-independent approximation for ∆m(µ),

(41) ∆m(µ) ≈ 1

β(µ)

(
c1‖(Φg

I)−1‖2 σgMg+1 + c1‖(Φa
I)−1‖2 σaMa+1 ‖VumN (µ)‖X

)
,

where c1 = ‖X−1/2‖2 and c2 = ‖X−1‖2 are two norm equivalence constants and σgMg+1 and σaMa+1 denote
the first truncated singular values in the MDEIM approximations of g and A.

Remark 5. The expression for ∆m(µ) shows that the error emN (µ) is controlled by the difference in the
action of the operators A(µ) and Am(µ) onto the subspace Range(V). This may suggests that, in case
of simultaneous system approximation and state-space reduction, the training of MDEIM should not try to
match A(µ) to Am(µ), but rather A(µ)V to Am(µ)V. As a result, instead of approximating a sparse vector
function of dimension n2, we would approximate a dense vector function of dimension nN . Depending on
the sparsity and the ratio n/N , one of the two approaches may be more efficient. More importantly however,
this approach could only be implemented in combination with a simultaneous system approximation and
state-space reduction approach. For this reason, we do not further investigate here this alternative option.

5. Application to the shape optimization of an acoustic horn

We now apply the methodology developed in the previous section to problem (5). The full-order model
is given by a P1 finite element approximation of (6) (as described in Section 2.1), leading to a linear system
(9) of dimension n = 48 925, obtained using a mesh made of 96 537 triangular elements. Unless otherwise
stated, the CPU times reported in this paper refer to computations performed on a workstation with a Intel
Core i5-2400S CPU and 16 GB of RAM using a code developed in the MATLAB R© environment.

5.1. One parameter case (frequency)

As a first test we keep the geometrical parameters µg fixed to the reference configuration and let the
frequency f = µ1 vary in the range D = [10, 1800]. Since the shape parametrization is not considered
here, the problem exhibits a trivial affine decomposition that we expect to recover exactly within our
framework. In fact, the interpolation procedure terminates after selecting Ma = 3 and Mg = 1 bases (out of
20 snapshots in both cases) for the system matrix and right-hand side. In this case, system approximation
does not introduce any error in the ROM, so that the two procedures to combine system and state-space
reduction coincide. Moreover, the evaluation of the θ(µ) functions is extremely fast, since only 24 (out of
96 537) reduced elements have been selected (see also Table 1).

The next step consists in constructing the reduced basis V. We plug the obtained empirical affine
decomposition into the usual (Galerkin) RB framework [49]. We first compute an approximation βI(µ) of the
stability factor β(µ) obtained by an adaptive RBF interpolation [50]. Starting from a coarse interpolation,
the method progressively improves the approximation by adding new interpolation points in the regions
of highest variation of β(µ). The selected interpolation points and the resulting interpolant are shown in
Fig. 4. As RBF interpolation is particularly suited for scattered data in high-dimension, the same procedure
will be adopted also in case of higher-dimensional parameter spaces. Then, we run the greedy algorithm
using ∆N (µ) as an error estimator; by requiring a relative tolerance of 10−4, we end up with a reduced basis
of dimension N = 50. In Fig. 4 we also report the stability factor βmN (µ) of the reduced problem, defined as

(42) βmN (µ) := σmin(X
− 1

2

N Am
N (µ)X

− 1
2

N ),

where XN = VT XV. One can observe that the stability factor for the reduced problem both closely 
follows and is larger than its full-order counterpart. Moreover, in Fig. 4 we compare the error estimate



∆N (µ) + ∆m(µ) with the norm of the error emN (µ). The error estimate is about one order of magnitude
higher than the norm of the error. Furthermore, it can be observed that both the error estimate and true
errors are dominated by the reduced-basis approximation component and not by the system approximation
component.
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Figure 4: Acoustic horn, one parameter test case. On the left: stability factor β(µ) (and its reduced counterpart βm
N (µ)). On

the right: relative error and estimate with respect to N (average values over a random sample of 200 parameter points).

Table 1: Acoustic horn, one parameter test case. Computational details.

Approximation data Computational performances

Number of FE dofs n 48 925 Number of ROM dofs 50
Number of elements 96 537 Number of reduced elements 24
Number of parameters P 1 Dofs reduction 978:1
Number of matrix snapshots 20 Number of matrix bases Ma 3
Number of rhs snapshots 20 Number of rhs bases Mg 1
FOM solution time 1.5 s ROM solution time 5 · 10−4 s
Tolerance RB greedy εtol 10−4 ROM online estimation 2 · 10−3 s

5.2. Two parameters case (frequency plus one RBF control point)
In addition to the frequency, we then also consider a geometrical parameter, namely the vertical dis-

placement of the right-most RBF control point in Fig. 1. The parameter domain is then given by D =
[50, 1000]× [−0.03, 0.03].

We begin by computing a set of 80 matrix and vector snapshots corresponding to 80 parameter samples
selected by Latin Hypercube Sampling (LHS) design in D. The eigenvalues of the correlation matrices of 
matrix and vector snapshots are reported in Fig 5. Based on the decay of the singular values, we retain the
first Ma = 13 and Mg = 3 POD modes and then perform MDEIM and DEIM, respectively.

In this case, we test the efficacy of Algorithm 3 for the ROM construction in combination with a POD 
– rather than greedy – approach. To this end, we first solve offline the approximated FOM (33) to obtain a 
set of 150 solution snapshots (corresponding to 150 parameter configurations selected by LHS design) and 
then we extract N = 80 POD basis functions. Finally, we compute all the quantities required to compute
the estimate ∆N (µ) in the online stage. To assess the ROM accuracy, in Fig. 5 we report the average errors
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approximation is negligible in the reduced model for Ma = 13 and Mg = 3. To assess the influence of the
system approximation on the reduced model, we compute then the error ‖eNm‖X for different levels of matrix 
approximation (keeping Mg = 3 fixed). The results are reported in Fig. 6; we observe that already with
Ma = 9, we obtain a sufficiently accurate reduced model, the relative error being far below 1%.
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Figure 5: Acoustic horn, two parameters test case. On the left: POD spectrum of vector (blue) and matrix (red) snapshots.
On the right: relative error over a testing set of 200 points. Ma = 13, Mf = 3.
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Figure 6: Acoustic horn, two parameters test case. Average (over a testing sample of 200 random points) error ‖em
N (µ)‖X with

respect to N for different value of Ma (with Mg = 3 fixed).

5.3. Five parameters case

We now let all five parameters [f µg] vary: the parameter domain is given by D = [50, 1000]×Dg, where
Dg = [−0.03, 0.03]4. As before, we first perform MDEIM and DEIM using matrix and vector bases made
of Ma = 95 and Mg = 4 POD modes, extracted from a set of 250 snapshots (the corresponding spectra are
reported in Fig. 7, while the reduced mesh is shown in Fig 8). Then, we employ again POD to build a basis
V of dimension N = 80 starting from a random set of 200 solution snapshots. The entire offline time for
the construction of the ROM (including system approximation, reduced space construction, projection and
computation of the ingredients for error estimation) is about 11 minutes1. In particular, running MDEIM
on the matrix snapshots takes only 16 seconds (9 seconds for extracting the POD basis and 7 seconds for
selecting the interpolation indices), thus representing a very marginal cost.

In this case the dominating error is the one due to system approximation, as shown in Fig. 8, which is
however less than 0.5% on average over the parameter space. As a result, we obtain a reliable approximation
of the output of interest J(µ) (see Fig. 9) whose evaluation is one hundred times faster than that of the
original high-fidelity approximation. Further details about the computational performances are provided in
Table 2.

1In this case, for offline computations we used 8 cores on a node (equipped with two Intel Xeon E5-2660 processors and 64 
GB of RAM) of the SuperB cluster at EPFL.



100 101 102
10−11

10−8

10−5

10−2

Mg

100 101 102
10−10

10−7

10−4

10−1

Ma
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Figure 8: Acoustic horn, five parameters test case. On the left: zoom of the reduced mesh (red elements) around the horn. On
the right: relative error and estimates averaged over a testing set of 200 points.

Therefore, we can exploit the ROM to efficiently solve the problem of finding the shape which maximizes
the horn efficiency over a certain frequency range. This leads to the following shape optimization problem
(see e.g. [36, 37, 51]): find µ∗g ∈ Dg such that

(43) µ∗g = arg min
µg∈Dg

R(f,µg) := arg min
µg∈Dg

∑

f∈F
(J(f,µg))

2
,

where F is a set of frequencies at which we want to minimize the waves reflection. We solve the PDE-
constrained least-squares minimization problem (43) by means of a black-box SQP optimization routine2

with finite-difference approximation of the gradient and BFGS approximation of the Hessian of the objective
function R(·, ·). As a result, at each optimization iteration the routine requires to solve the PDE at least
5|F| times. We first perform the optimization for a list of given frequencies F = 300, 600, 1000 Hz: finding
the optimal µg requires from 25 to 200 ROM evaluations and thus takes no more than 4 seconds (the
corresponding geometries and reflection spectra are reported in Figure 10 and 11). As a comparison, relying
on the FOM, the optimization would require about 3 minutes to achieve convergence. In all cases, the optimal
shapes returned by the MDEIM-based procedure matches very well the ones computed using the FOM. The
speedup that is achieved is even more evident when we are interested in optimizing the horn efficiency

2MATLAB fmincon in this work.
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Figure 9: Acoustic horn, five parameters test case: comparison of the reflection spectrum obtained by the FOM and ROM for
different shapes.

Figure 10: Acoustic horn, five parameters test case. Comparison between the shapes of the horn resulting from different type of
optimization using the ROM (red) and the FOM (blue). From left to right: optimization at f = 300 Hz, f = 600 Hz, f = 1000
Hz, and finally optimization over the frequency range 700− 1000 Hz.

over a certain frequency range, leading to the definition of a robust optimization problem. Considering the
solution of (43) with 300 frequencies F = {700 + i}300

i=1 requires about 2.3 · 104 PDE solutions, which takes
almost 9 hours using the FOM, but only 8 minutes using the ROM. Again, one can observe in Figure 10
that both optimal shapes match very well. Moreover, even taking into account the offline time for the ROM
construction, a speedup of 28 is achieved.

Table 2: Acoustic horn, five parameters test case. Computational details.

Approximation data Computational performances

Number of FE dofs n 48 925 Number of ROM dofs 100
Number of elements 96 537 Number of reduced elements 540
Number of parameters P 5 Dofs reduction 490:1
Number of matrix snapshots 250 Number of matrix bases Ma 95
Number of rhs snapshots 250 Number of rhs bases Mg 4
Solution snapshots 200 ROM solution time 2 · 10−2 s
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Figure 11: Acoustic horn, five parameters test case. Reflection spectra for the horns in Figure 10 optimized using the ROM.

6. Hyper-reduction of parabolic equations

We now consider the dynamical system (1): for all t ∈ (0, T ], find uh(t;µ) ∈ Rn such that

(44) M(t;µ)
duh
dt

+ A(t;µ)uh = g(t;µ),

with3 uh(0;µ) = 0. Such a system can result from the FE discretization of a parabolic problem.
Following (3), Petrov-Galerkin projection leads to a reduced system of equations in terms of a reduced

variable uN ∈ RN

(45) MN (t;µ)
duN
dt

+ AN (t;µ)uN = gN (t;µ),

where
MN (t;µ) = WTM(t;µ)V, AN (t;µ) = WTA(t;µ)V, gN (t;µ) = WTg(t;µ).

Applying MDEIM to approximate A(t;µ) and M(t;µ), and DEIM to approximate g(t;µ) as in Section 4,
leads to the following ROM with system approximation: find umN (t;µ) ∈ RN such that

(46) Mm
N (t;µ)

dumN
dt

+ Am
N (t;µ)umN = gmN (t;µ).

6.1. Generation of the reduced spaces

The two approaches for the construction of the reduced spaces defined in Section 4.1 can also be applied
in the present case. Here, however, we further develop a suitable simultaneous system approximation and
state-space reduction approach where a global reduced basis V is constructed by means of POD. To this
end, let us first introduce a partition {tn}Ntn=0 of the time interval [0, tf ] and a set of K training inputs
{µ1, . . . ,µK}. In view of the application of Section 7, we only consider here the case of Galerkin projection,
i.e. we choose W = V.

The construction of the reduced model consists of two main steps (see Algorithm 4 for the details). First,
for each training input µk, k = 1, . . . ,K, we solve (44), collect snapshots

{uh(tn;µk)}Ntn=1, {g(tn;µk)}Ntn=1, {A(tn;µk)}Ntn=1, {M(tn;µk)}Ntn=1,

compress them by POD and progressively build respective global bases V, Φg, Φa, Φm. This progressive
construction of POD bases, which can be efficiently done using the procedure described in [52], is crucial to
avoid storing all the solution and system snapshots during offline computations. Then, we perform DEIM



Set V = [ ], Φa = [ ], Φm = [ ], Φg = [ ]

(1) collect and compress solution, matrix and vector snapshots

for k = 1 : K

(1a) solve (44) for µ = µk to obtain solution, matrices and vector snapshots

Λk
u = [uh(t1;µk), . . . , uh(tNt ;µ

k)]

Λk
a = [vec(A(t1;µk)), . . . , vec(A(tNt ;µ

k))

Λk
m = [vec(M(t1;µk)), . . . , vec(M(tNt ;µ

k))

Λk
g = [g(t1;µk), . . . , g(tNt ;µ

k)]

(1b) compress local snapshots matrices and generate global ones

Λ̃k
u = POD(Λk

u, ε
loc
u ), Λ̃u = [V Λ̃k

u]

Λ̃k
a = POD(Λk

a, ε
loc
a ), Λ̃a = [Φa Λ̃k

a]

Λ̃k
m = POD(Λk

m, ε
loc
m ), Λ̃m = [Φm Λ̃k

m]

Λ̃k
g = POD(Λk

g , ε
loc
g ), Λ̃g = [Φg Λ̃k

g ]

(1c) extract global solution, matrix and vector bases

V = POD(Λ̃u, εu)

Φa = POD(Λ̃a, εa), Φm = POD(Λ̃m, εm)

Φg = POD(Λ̃g, εg)

end for

(2) perform MDEIM on Φa, Φm and DEIM on Φg; generate a common reduced mesh

project resulting matrices and vectors on the reduced basis V

Algorithm 4: simultaneous system approximation and state-space reduction approach for problem (44).
At each step k of the loop, we compress the local snapshots matrices Λk

u, Λk
a, Λk

m, Λk
g by POD up to

(user-defined) tolerances εloc
u , εloc

a , εloc
m , εloc

g , respectively. Alternatively, we could directly specify desired

dimensions N loc, M loc
a , M loc

m , M loc
g (the same applies to step (1c)).

on Φg and MDEIM on Φa, Φm to obtain affine approximations of g(t;µ), A(t;µ) and M(t;µ), respectively.
Finally, the resulting matrices and vectors are projected onto the reduced basis V.

Here, we assume the training inputs {µ1, . . . ,µK} to be selected either a priori guided by physical
intuition, or by sampling techniques like random or latin hypercube (LHS) sampling (see, e.g., [53]) and
sparse grids (see, e.g., [54]). However, the offline construction in Algorithm 4 can accommodate more
general training techniques such as the greedy [55] and POD-greedy [56] algorithms, possibly combined with
adaptivity [57, 58], heuristic error indicators [52], and localized bases [59]. To this end, however, suitable a
posteriori error estimates are needed. These are derived in the next section.

6.2. A posteriori error estimates

The goal of this section is to derive a new posteriori error estimate for the error emN (t;µ) between the
solution uh(t;µ) of the FOM and the solution umN (t;µ) of the ROM with system approximation

(47) emN (t;µ) = uh(t;µ)−VumN (t;µ).

As in the steady case, this error can be decomposed as emN (t;µ) = em(t;µ) + eN (t;µ), where em(t;µ) is the
error arising from the system approximation

(48) em(t;µ) = uh(t;µ)− umh (t;µ),

3For the sake of simplicity we consider here a null initial condition uh(0;µ); however, everything still applies in the more
general case where uh(0;µ) = u0

h(µ).



where umh (t;µ) ∈ Rn is the solution of the FOM with system approximation

(49) M
dumh
dt

+ Am(t;µ)umh = gm(t;µ)

with umh (0;µ) = 0, and eN (t;µ) is the error arising from the state-space reduction

(50) eN (t;µ) = umh (t;µ)−VumN (t;µ).

For the sake of simplicity, we assume here the matrix M to be (t,µ)-independent, and both matrices M
and A(t;µ) to be symmetric positive definite. Moreover, it is useful to first introduce the following stability
factors

(51) β(t;µ) := λmin(X−
1
2 A(t;µ)X−

1
2 ), βm(t;µ) := λmin(X−

1
2 Am(t;µ)X−

1
2 ),

and the residual rm(umN ; t;µ)

(52) rm(umN ; t;µ) = gm(t;µ)−Am(t;µ)VumN −MV
dumN
dt

.

While it is possible to estimate separately the two error components (as we did in Section 4), we now directly
derive an estimate for the M-norm of the error emN .

Proposition 3. The error emN (t;µ) is bounded as

(53) ‖emN (t;µ)‖2M ≤ ∆m(t;µ) + ∆N (t;µ),

where

∆N (t;µ) = ‖eN (0;µ)‖2M +

∫ t

0

1

β(s;µ)
‖rm(umN ; s;µ)‖2X−1 ds,

∆m(t;µ) =

∫ t

0

1

β(s;µ)

(
‖gm(s;µ)− g(s;µ)‖2X−1 + ‖Am(s;µ)−A(s;µ)‖2X,X−1‖VumN (s;µ)‖2X

)
ds.

Proof. We start by observing that

M
demN
dt

+ A(t;µ)emN = g(t;µ)−MV
dumN
dt
−A(t;µ)VumN

= g(t;µ)− gm(t;µ) + (Am(t;µ)−A(t;µ))VumN + rm(umN ; t;µ).

Pre-multiplying both sides of the equation by emN
T leads to

1

2

d‖emN‖2M
dt

+ emN
TA(t;µ)emN = emN

T
(
g(t;µ)− gm(t;µ) + (Am(t;µ)−A(t;µ))VumN + rm(umN ; t;µ)

)
.

By exploiting the positive definiteness of A in the left-hand side, Cauchy-Schwarz and Young inequalities
in the right-hand side, we obtain

1

2

d‖emN‖2M
dt

+ β(t;µ)‖emN‖2X ≤
β(t;µ)

2
‖emN‖2X

+
1

2β(t;µ)

(
‖g(t;µ)− gm(t;µ)‖2X−1 + ‖(Am(t;µ)−A(t;µ))VumN‖2X−1 + ‖rm(umN ; t;µ)‖2X−1

)
.

Integrating over (0, t), t ∈ (0, T ], we end up with

‖emN (t;µ)‖2M +

∫ t

0

β(s;µ)‖emN (s;µ)‖2X ds ≤ ‖eN (0;µ)‖2M +

∫ t

0

1

β(s;µ)

(
‖rm(umN ; s;µ)‖2X−1

+ ‖gm(s;µ)− g(s;µ)‖2X−1 + ‖(Am(s;µ)−A(s;µ))VumN‖2X−1

)
ds,

from which (53) easily follows.



We remark that the dual norm of the residual can be efficiently computed by a proper offline-online
decomposition as described in [60], while the contributes due to system approximation can be approximated
as in (41). Moreover, to practically evaluate the above error bound, the integrals over time must be ap-
proximated by a quadrature rule. Alternatively, tighter error estimates can also be derived using Krylov
subspaces and exponential integrators [61]

7. Application to a heat transfer problem

We now apply the methodology developed in Sect. 6 to problem (10). We first specify the equations
for the fluid velocity v(x, t) which acts as transport field in (10). The fluid is assumed to be homogeneous,
incompressible and Newtonian, governed by the Navier-Stokes equations

(54)

∂v

∂t
+ (∇v)v − νf∆v +∇p = 0 in Ω× (0, tf )

div v = 0 in Ω× (0, tf )

v = h in Γd × (0, tf )

v = 0 in Γw ∪ Γc × (0, tf )

−pn + νf (∇v)n = 0 in Γn × (0, tf )

v(x, 0) = 0 in Ω,

where p = p(x, t) is the fluid pressure, n the normal unit vector to Γn, νf the kinematic viscosity, and
tf = 10 the time horizon of interest. The velocity inflow profile prescribed on Γd is given by

h =

(
4Uy(H − y)

H2
h(t), 0

)T
, with h(t) =

{
0.5(1− cos(π/2t)), t < 2,

1, t ≥ 2,

with U = 2. We consider νf as a parameter µ1 ∈ [2/30, 2/3000], yielding a Reynolds number

Re =
2
3U · 2r
µ1

∈ [20, 200].

7.1. Full and reduced-order approximation of the fluid equations

The Navier-Stokes equations (54) are discretized in space by means of equal order P1 −P1 finite elements 
for the velocity and pressure variables stabilized by the Dohrmann-Bochev scheme [62]. A triangular mesh
made of 19 359 nodes and 37 888 elements is used. For the time discretization, we employ the Backward 
Euler scheme (with a fixed time step of 10−2) combined with a semi-implicit treatment of the convective 
term (see, e.g., [40]). Note that the solution converges to a stationary state for Re smaller than about 40, 
while a vortex-shedding flow appears for higher Re.

Upon this full order approximation, we build a reduced order model through a POD-Galerkin procedure 
(see, e.g., [63, 64]): we solve the FOM for 7 parameter values, at each step we collect the solution snapshots 
for t > 7 (so that only the fully developed flow is considered) and then we build a basis Z (of dimension 
70) for the velocity and a basis (of dimension 53) for the pressure using POD. A pure Galerkin projection 
is then employed to obtain the ROM. Since the parameter dependence is trivially affine, we can provide the 
usual online-offline computational procedure without introducing any kind of system approximation. The 
resulting ROM allows to obtain the reduced transport field vN (t; µ) in less than 3 seconds.

7.2. Reduced order model for the temperature equation

We consider as full-order model for problem (10) the finite element discretization (11) with vh(t; µ) 
replaced by vN (t; µ). Moreover, we employ the Backward Euler method (with a fixed time step of 10−2) to
advance in time. As anticipated in Sect. 2.2, we consider as parameter µ2 ∈ [3, 7] the temperature imposed 
on the cylinder and as parameter µ3 ∈ [10−2, 10−3] the thermal diffusivity.
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Figure 12: First 100 singular values of the local snaphots matrices Λk
a (on the left) and Λk

g (on the right) for k = 1, 6, which
correspond to Re ≈ 196 and Re ≈ 21 respectively.

Figure 13: Zoom of the reduced mesh behind and around the cylinder.

We run Algorithm 4 to build the ROM using a training set of K = 10 parameter values selected by
LHS sampling. At each step, we first solve the ROM for the Navier-Stokes equations and the FOM for
the temperature equation; then, we compress the local snapshots matrices by POD with εloc

u = 10−3,
εloc
a = εloc

m = εloc
g = 10−4. The number of retained POD modes varies significantly depending of the value of

the Reynolds number. We report in Fig. 12 the singular values of Λk
a and Λk

g for Re ≈ 21 (corresponding
to a stationary flow) and Re ≈ 196 (corresponding to a vortex-shedding flow); while in the former case the 
first mode is sufficient to describe the entire dynamics, in the latter case the singular values decay more
slowly and at least 10 modes have to be retained. After the snapshots collection we perform step (2) of 
Algorithm 4 obtaining a reduced model with N = 138, Ma = 129, Mm = 125 and Mg = 34. The resulting 
reduced mesh (see Fig. 13) is made of 1214 elements, corresponding to about the 3% of the original ones; 
note that they concentrates in the wake and on the boundary of the cylinder, i.e. in the regions where the 
dynamics of the physical phenomena is more relevant.

In the online phase, given a parameter value, to obtain the temperature field we first compute vN (t; µ) 
and then solve the reduced order model for the temperature equation. Note that the online assembly of 
A(t; µ), M(t; µ) and g(t; µ) on the reduced mesh would require the full-order expansion of the reduced 
transport field vN (t; µ), i.e. ZvN (t; µ); however, thanks to the local support of the FE basis functions, 
only its restriction to the reduced degrees of freedom is actually needed. A schematic summary of the 
offline/online computational strategy is offered in Fig. 14.

We assess the accuracy of the ROM by monitoring the temperature at a point x = (0.5, 0.26) in the 
wake of the cylinder. The comparison between this latter and the one predicted by the FE model for various 
parameter values (different from the training ones) is shown in Fig. 15; the corresponding temperature fields 
are shown in Fig 16. The ROM correctly reproduces the dynamics of the system in both the stationary and 
periodic regimes. Moreover, the solution of the ROM takes less than 0.05 seconds per time step, while each 
FOM time step takes about 0.9 seconds.
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Figure 14: Scheme of the offline and online phases for the coupled heat transfer problem. Here NS-ROM refers to the ROM
for the Navier-Stokes equations (54), while AD-HROM refers to the hyper-reduced order model for the advection-diffusion
equation (10).
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Figure 15: Comparison between the temperature at point x = (0.50, 0.26) obtained solving the high-fidelity (red line) and
reduced (blue line) models for different parameter values: µ1 = [36.8, 4.61, 10−2.4] (top left), µ2 = [133, 5.81, 10−2.1] (top
right), µ3 = [83.4, 4.83, 10−3] (bottom left), µ4 = [141.9, 6.88, 10−2.5] (bottom right).



Figure 16: Comparison between the temperature field at final time obtained by solving the ROM (on the left) and FOM (on
the right) for the parameter configurations reported in Fig 15 (from top to bottom).

8. Conclusions

In this work, we developed a general framework to embed the Matrix Discrete Empirical Interpolation
Method (MDEIM) in the context of model reduction of parametric systems arising from the discretization of
linear PDEs. Special emphasis is put on the offline/online computational strategy, based on a non-intrusive
and efficient implementation relying on the definition of a reduced mesh. It is demonstrated how the system
approximation resulting from MDEIM can be combined with a state approximation resulting from a reduced-
basis greedy approach as well as Proper Orthogonal Decomposition. A posteriori error estimates are derived
in the case of elliptic and parabolic systems, highlighting the contributions to the error from both the system
and the state approximations.

The effectiveness of MDEIM on the reduction of linear parametric problems is demonstrated for two
scenarios. In the first case, it is shown that MDEIM can be used for the fast solution of PDE-constrained
optimization problem by applying it to the robust shape optimization of an acoustic horn. The resulting
reduced model is able to provide the optimal design while reducing the computational time by a factor of
about 70. In the second scenario, the MDEIM is employed for the reduction of a coupled fluid problem,
leading to a speedup of about 20.
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