This paper reports functionalization reactions of sp2 carbon allotropes, both nano- and nanostructured, able to introduce heteroatoms such as oxygen and nitrogen, without altering the bulk crystalline organization of the graphitic substrates. sp2 carbon allotropes were: carbon black (CB), nanosized graphite with high surface area (HSAG), multiwalled carbon nanotubes (CNT). Reactions of carbon allotropes were performed with either KOH or hydrogen peroxide or a serinol derivative, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol (serinolpyrrole, SP), in the absence of solvents or catalysts, by simply donating either thermal or mechanical energy. Sulphur cured composites with HSAG containing hydroxy groups (from the reaction with KOH) revealed better mechanical properties than composites from melt blending with pristine HSAG. CB functionalized with SP was able to promote reduction of Payne effect in compounds based on CB and silica.

Controlled functionalization of sp2 carbon allotropes for the reinforcement of diene elastomers

Vincenzina Barbera;Andrea Bernardi;Maurizio Galimberti
2017

Abstract

This paper reports functionalization reactions of sp2 carbon allotropes, both nano- and nanostructured, able to introduce heteroatoms such as oxygen and nitrogen, without altering the bulk crystalline organization of the graphitic substrates. sp2 carbon allotropes were: carbon black (CB), nanosized graphite with high surface area (HSAG), multiwalled carbon nanotubes (CNT). Reactions of carbon allotropes were performed with either KOH or hydrogen peroxide or a serinol derivative, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol (serinolpyrrole, SP), in the absence of solvents or catalysts, by simply donating either thermal or mechanical energy. Sulphur cured composites with HSAG containing hydroxy groups (from the reaction with KOH) revealed better mechanical properties than composites from melt blending with pristine HSAG. CB functionalized with SP was able to promote reduction of Payne effect in compounds based on CB and silica.
sp2 carbon allotrope, functionalization, NR latex
File in questo prodotto:
File Dimensione Formato  
Elastomery, 2017, 21(4), 235-251.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1039912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact