This work presents high surface area sp2 carbon allotropes as important tools to design and prepare lightweight materials. Composites were prepared based on either carbon black (CB) or carbon nanotubes (CNT) or hybrid CB/CNT filler systems, with either poly(1,4-cis-isoprene) or poly(styrene-co-butadiene) as the polymer matrix. A correlation was established between the specific interfacial area (i.a.), i.e. the surface made available by the filler per unit volume of composite, and the initial modulus of the composite (G′γmin), determined through dynamic mechanical shear tests. Experimental points could be fitted with a common line, a sort of master curve, up to about 30.2 and 9.8 mass% as CB and CNT content, respectively. The equation of such master curve allowed to correlate modulus and density of the composite. Thanks to the mastercurve, composites with the same modulus and lower density could be designed by substituting part of CB with lower amount of the carbon allotrope with larger surface area, CNT. This work establishes a quantitative correlation as a tool to design lightweight materials and paves the way for large scale application in polymer matrices of innovative sp2 carbon allotropes.

sp2 carbon allotropes in elastomer matrix: from master curves for the mechanical reinforcement to lightweight materials

M. Galimberti;G. Infortuna;S. Guerra;V. Barbera;
2018-01-01

Abstract

This work presents high surface area sp2 carbon allotropes as important tools to design and prepare lightweight materials. Composites were prepared based on either carbon black (CB) or carbon nanotubes (CNT) or hybrid CB/CNT filler systems, with either poly(1,4-cis-isoprene) or poly(styrene-co-butadiene) as the polymer matrix. A correlation was established between the specific interfacial area (i.a.), i.e. the surface made available by the filler per unit volume of composite, and the initial modulus of the composite (G′γmin), determined through dynamic mechanical shear tests. Experimental points could be fitted with a common line, a sort of master curve, up to about 30.2 and 9.8 mass% as CB and CNT content, respectively. The equation of such master curve allowed to correlate modulus and density of the composite. Thanks to the mastercurve, composites with the same modulus and lower density could be designed by substituting part of CB with lower amount of the carbon allotrope with larger surface area, CNT. This work establishes a quantitative correlation as a tool to design lightweight materials and paves the way for large scale application in polymer matrices of innovative sp2 carbon allotropes.
2018
rubber, carbon nanotubes, interfacial area, lightweight material, dynamic moduli
File in questo prodotto:
File Dimensione Formato  
eXPRESS Polymer Letters Vol.12, No.3 (2018) 265–283.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 716.74 kB
Formato Adobe PDF
716.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1035655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact