A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.

MOR-based approach to uncertainty quantification in electrokinetics with correlated random material parameters

CODECASA, LORENZO;DI RIENZO, LUCA
2017-01-01

Abstract

A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.
2017
Correlated random variables, electrokinetics problem, parametric model-order reduction (PMOR), spectral approximation, uncertainty quantification
File in questo prodotto:
File Dimensione Formato  
2017_IEEE_Trans_Magn_UQ_correlated_parameters_electrokinetics_Codecasa_Di_Rienzo.pdf

Accesso riservato

: Publisher’s version
Dimensione 545.9 kB
Formato Adobe PDF
545.9 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1034488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact