We study the shifting property of a matrix $ R = [r_{n,k}]_{n,k\geq0} $ and a sequence $ (h_n)_{n\in\mathbb{N} } $, i.e., the identity \begin{displaymath} \sum_{k=0}^n r_{n,k} h_{k+1} = \sum_{k=0}^n r_{n+1,k+1} h_k \, , \end{displaymath} when R is a Riordan matrix, a Sheffer matrix (exponential Riordan matrix), or a connection constants matrix (involving symmetric functions and continuants). Moreover, we consider the shifting identity for several sequences of combinatorial interest, such as the binomial coefficients, the polynomial coefficients, the Stirling numbers (and their q-analogues), the Lah numbers, the De Morgan numbers, the generalized Fibonacci numbers, the Bell numbers, the involutions numbers, the Chebyshev polynomials, the Stirling polynomials, the Hermite polynomials, the Gaussian coefficients, and the q-Fibonacci numbers.

Shifting Property for Riordan, Sheffer and Connection Constants Matrices.

MUNARINI, EMANUELE
2017-01-01

Abstract

We study the shifting property of a matrix $ R = [r_{n,k}]_{n,k\geq0} $ and a sequence $ (h_n)_{n\in\mathbb{N} } $, i.e., the identity \begin{displaymath} \sum_{k=0}^n r_{n,k} h_{k+1} = \sum_{k=0}^n r_{n+1,k+1} h_k \, , \end{displaymath} when R is a Riordan matrix, a Sheffer matrix (exponential Riordan matrix), or a connection constants matrix (involving symmetric functions and continuants). Moreover, we consider the shifting identity for several sequences of combinatorial interest, such as the binomial coefficients, the polynomial coefficients, the Stirling numbers (and their q-analogues), the Lah numbers, the De Morgan numbers, the generalized Fibonacci numbers, the Bell numbers, the involutions numbers, the Chebyshev polynomials, the Stirling polynomials, the Hermite polynomials, the Gaussian coefficients, and the q-Fibonacci numbers.
2017
combinatorial sum, Riordan matrix, Sheffer matrix, connection constant, generating series, differential equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1032695
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact