The unreinforced masonry (URM) is a complex and variegate construction material characterized by a prominent nonlinear response. For this reason, advanced numerical simulations are required to assess URM buildings, especially in case of severe loading conditions as earthquakes. However, given the theoretical and computational difficulties of detailed non-linear analyses, linear elastic methods are still adopted in current practice. This results in conservative seismic assessments and, consequently, invasive and expensive strengthening interventions to guarantee seismic safety. Starting from these statements, the aim of the paper is to provide closed-form equations useful for a preliminary strength and ductility assessment of unreinforced masonry rectangular cross-sections. Expressions for direct calculation of M-N (bending moment – axial load) strength domains and M-χ (moment – curvature) ductility diagrams for different constitutive laws are provided. The expressions are firstly applied to a representative URM cross-section and secondarily used for the numerical simulation of a recent out-of-plane loading experimental test available in the literature. For a better comprehension of URM members behavior under axial-bending loading condition, 3D M-N-χ diagrams are presented in the paper.
Flexural strength-ductility assessment of unreinforced masonry cross-sections: analytical expressions
GIORDANO, NICOLA;CRESPI, PIETRO GIUSEPPE;FRANCHI, ALBERTO
2017-01-01
Abstract
The unreinforced masonry (URM) is a complex and variegate construction material characterized by a prominent nonlinear response. For this reason, advanced numerical simulations are required to assess URM buildings, especially in case of severe loading conditions as earthquakes. However, given the theoretical and computational difficulties of detailed non-linear analyses, linear elastic methods are still adopted in current practice. This results in conservative seismic assessments and, consequently, invasive and expensive strengthening interventions to guarantee seismic safety. Starting from these statements, the aim of the paper is to provide closed-form equations useful for a preliminary strength and ductility assessment of unreinforced masonry rectangular cross-sections. Expressions for direct calculation of M-N (bending moment – axial load) strength domains and M-χ (moment – curvature) ductility diagrams for different constitutive laws are provided. The expressions are firstly applied to a representative URM cross-section and secondarily used for the numerical simulation of a recent out-of-plane loading experimental test available in the literature. For a better comprehension of URM members behavior under axial-bending loading condition, 3D M-N-χ diagrams are presented in the paper.File | Dimensione | Formato | |
---|---|---|---|
ENGSTRUCT_2017_299_Revision 1_V0.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
3.09 MB
Formato
Adobe PDF
|
3.09 MB | Adobe PDF | Visualizza/Apri |
MNchi masonry_Engstruct.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.