
Flexural Strength-Ductility Assessment of Unreinforced Masonry 

Cross-Sections: Analytical Expressions

Nicola Giordanoa,* ( nicola.giordano@polimi.it ), Pietro Crespia ( pietro.crespi@polimi.it ), Alberto 

Franchia ( alberto.franchi@polimi.it )

a Department of Architecture, Built Environment and Construction Engineering, Politecnico di 

Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

* Corresponding author. Tel.: +39 022399 4348. E-mail address: nicola.giordano@polimi.it. Postal 

address: Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

ABSTRACT

The unreinforced masonry (URM) is a complex and variegate construction material characterized by 

a prominent nonlinear response. For this reason, advanced numerical simulations are required to 

assess URM buildings, especially in case of severe loading conditions as earthquakes. 

However, given the theoretical and computational difficulties of detailed non-linear analyses linear 

elastic methods are still adopted in current practice. This results in conservative seismic assessments 

and, consequently, invasive and expensive strengthening interventions to guarantee seismic safety.

Starting from these statements, the aim of the paper is to provide closed-form equations useful for a 

preliminary strength and ductility assessment of unreinforced masonry rectangular cross-sections. 

Expressions for direct calculation of M-N (bending moment – axial load) strength domains and M-χ 

(moment – curvature) ductility curves for different constitutive laws are provided. The expressions 

are firstly applied to a representative URM cross-section and secondarily used for the numerical 

simulation of a recent out-of-plane loading experimental test available in the literature. For a better 

comprehension of the behavior of URM members in axial-bending load condition, 3D M-N-χ 

diagrams are presented in the paper.

mailto:nicola.giordano@polimi.it
mailto:pietro.crespi@polimi.it
mailto:alberto.franchi@polimi.it


Keywords

URM cross-section; seismic assessment; strength domain; moment-curvature, 3D M-N-χ diagram.

1. Introduction

Recent seismic events (L’Aquila Earthquake, Italy 2009 [1], Emilia Earthquake, Italy 2012 [2], Napa 

Earthquake, California 2014 [3]) have demonstrated another time that existing masonry buildings are 

affected by significant structural deficiencies. Poor quality of the materials, geometrical 

irregularities, inadequate wall-to-wall connections and absence of anti-seismic detailing are just a 

few aspects of masonry constructions weaknesses. Over the last years, the technical-scientific 

community has paid serious attention to the problem focusing on two main research lines. (i) 

Experimental investigation of the structural response of masonry before and after the application of 

strengthening interventions, both as prior-strengthening and as repair methods after damage. (ii) 

Development of analytical and numerical tools suitable for the seismic assessment and retrofitting 

design process of URM structures.

On one hand, the large amount of experimental tests carried out on masonry constructions [4] has 

allowed qualitative and quantitative validations of strengthening techniques (i.e. mortar injections, 

carbon-fiber reinforcements, tie-rods installation, floor-diaphragm strengthening, etc.) and 

calibration of masonry stress-strain constitutive models. On the other hand, the reliability of seismic 

assessment methods for URM buildings is still matter of debate [5], as recently observed in a blind 

test predictions experimental project carried out by Mendes et al. [6]. As a matter of fact, the usual 

hypotheses adopted in the structural analysis of reinforced concrete (r.c.) and steel buildings are no 

longer valid for masonry as briefly reported in Table 1.



GENERAL

STRUCTURES

MASONRY

STRUCTURES

Material / structural 

components behavior

in Service Limit State (SLS) 

conditions

Linear elastic.

Linear elastic response in compression.

Very low resistance in tension 

(no-tension material assumption).

Material /structural 

components behavior

in Ultimate Limit State (ULS) 

conditions

In general, it is possible to adopt 

elastic-plastic constitutive models 

in tension / compression. 

Structural component damages are 

usually concentrated in plastic 

hinge regions.

Material behavior in compression is 

characterized by a softening branch.

Structural components can lead to 

collapse for bending damage, shear 

damage or loss of equilibrium.

Modelling

The structure (usually a 3D frame) 

is represented by a beam finite 

element model.

The structure is composed by a 

masonry continuum which, in some 

cases, cannot be discretized as a 

system of beam elements.

Type of analysis

Response Spectrum Analyses 

(RSA) are recommended by codes 

and guidelines.

Since elastic analyses cannot estimate 

the redistribution of stresses due to 

cracking, nonlinear methods are 

required.

Behavior under seismic 

actions

Global behavior is guaranteed by 

good node connections between 

structural elements.

In case of poor wall-to-wall / wall-to-

floor connections, extensive cracks and 

damages can lead to the collapse of 

entire portions of the building 

(collapse mechanism).

Table 1. Usual hypotheses in the assessment of general structures and differences from masonry 

structures.



Lourenço et al. [7,8] furthermore underlined how the problem of knowledge is central when we are 

dealing with the seismic assessment of existing masonry constructions. In most cases the building 

geometry implemented in the structural software is not supported by a precise survey. Also, the 

internal composition of the walls cannot be investigated in an exhaustive way because of historic 

conservation prescriptions. Moreover, the characterization of the mechanical properties of the 

materials is challenging and requires expensive in-situ tests (flat jacks, diagonal compression, non-

destructive tests, etc. [9,10]). Finally, especially for historic buildings, the material state of stress is 

influenced by the variability of the mechanical properties, by the construction stages and by the 

continuous human modifications and repairing interventions occurred during the life of the structure 

[11].

Depending on typology of the building, availability of mechanical and geometrical data and expected 

computational-cost, different seismic assessment approaches have been proposed in the literature:

- Macro-Element Method or Equivalent Frame Method. The building is subdivided into beam 

elements (piers and spandrels) connected in the intersections with rigid nodes. The deformable 

elements are characterized by in-plane behavior and the non-linear response is concentrated in 

appropriate plastic hinges that take into account the geometry of the masonry member and the 

mechanical properties of the material in shear and compression (Lagomarsino et al. [12]).

- Continuum Finite Element Method (FEM). When the structure is characterized by a complex 

geometry, it is hard to adopt an equivalent frame simplification. In these cases, advanced FEM 

models with 2D/3D elements are preferred. Usually three approaches are adopted. I) Detailed micro-

modelling: bricks and mortar joints are represented by continuum elements. II) Simplified micro-

modelling: bricks are modeled by continuum elements while the behavior of the mortar joints is 

lumped in discontinuous interface elements. III) Macro-modelling: bricks and mortar are smeared 

out in a homogeneous continuum [7].



- Discrete Element Method (DEM). The masonry structure is subdivided in a discrete number of rigid 

bodies. The methodology is formulated in large displacement and enables finite displacements and 

rotations of these bodies including complete separation; new contacts are also caught by the method 

(Lemos [13]).

The above mentioned techniques have been continuously developed and compared by academic 

researchers [14,15]. Despite that, consulting engineers and practitioners are loath to adopt complex 

non-linear methods. High computational costs, complex theoretical aspects, questionable 

interpretation and validation of the results, are just a few of the problems underlined in current 

practice. Unfortunately, the effect of these perplexities results in an improper use of linear elastic 

analyses that cannot catch the unavoidable cracking response of the masonry under seismic loads 

[16].

1.1. Assessment of URM cross-sections: literature review

Generally speaking, damages in URM components are a combination of three physical phenomena 

[17,18]: cracking of the resisting cross-section and toe compression failure generated by bending 

moment; bed joint sliding produced by shear forces; diagonal cracks due to shear actions.  However, 

in case of slender masonry elements (such as columns, walls in out-of-plane loading, slender piers in 

in-plane loading, etc.), the leading failure mode is the one governed by bending. It is important to 

underline that the crisis at the sectional level (toe compression failure) can be preceded by the loss of 

equilibrium of the masonry element. This phenomenon occurs when the compressive strength of the 

masonry assemblage is relatively high or when the vertical stress due to dead loads is low.

Given this range of applicability, since ‘70ies [19] researchers have developed beam-theory based 

calculation tools able to predict the seismic capacity of URM elements. These studies, on one hand 

gave the starting point for the equivalent frame method formulation [20], on the other hand evolved 



in a specific research line focused on the evaluation of the in-plane and out-of-plane capacity of 

URM members via non-linear cross-section analysis [21,22].

The principal assumption of the cross-section analysis is that axial strains behave linearly in bending 

i.e. sections remain plane. The advantages and the limitations of this hypothesis has been deeply 

discussed and validated [16,23,24]. Looking at the experimental data collected by Brencich et al. 

[25] and Cavaleri et al. [26], the plane section assumption better fits in case of slender walls, regular 

masonry blocks and absence of rubble masonry internal leaf.

Results of the cross-section analysis are usually summarized in two diagrams: the M-N (bending 

moment - axial load) interaction curve reports the strength limit of the section; the M-χ (bending 

moment - flexural curvature) curve describes the deformation capacity of the section for a given 

axial load or eccentricity. Due to the complexity of the masonry material behavior, the analytical 

derivation of the M-N and M-χ diagrams is matter of interest for the scientific community.

In 2013 Parisi et al. [23] evaluated M-N strength domains for different masonry constitutive models. 

In their study M=f(N) closed-form equations for parabola-rectangle EC6 law [27] are firstly derived.  

Then, the effect of strain-softening is investigated adopting two advanced masonry models by 

Turnšek-Čačovič [28] and by Augenti-Parisi [29]. Depending on the complexity of the analytical 

problem, the resulting M-N curves are described by closed-form expressions or by a set of non-linear 

equations solved numerically.

The analytical estimation of M-χ curves has been investigated mainly for the case of constant 

eccentricity of the axial load. La Mendola [30] derived moment-curvature diagrams adopting the 

stress-strain softening model by Naraine et al. [31]. In their work, the nonlinear equations that define 

the equilibrium and compatibility of the cross-section are solved using an iterative numerical 

procedure. A similar study was carried out by Cavaleri et al. [26] adopting the Sargin concrete model 

[32]. More recently Parisi et al. [24] investigated the impact of different stress-strain models on M-χ 

curves. The results are compared to experimental M-χ diagrams from eccentric compression tests on 



masonry specimens. Furthermore, their paper includes an incremental iterative procedure for the 

evaluation of moment-curvature relations in case of fixed eccentricity or constant axial load.

Strength and deformation assessment of a masonry sections under axial load and bending can be 

alternatively achieved using FEM software with fiber beam finite elements [33]. This approach is 

largely adopted for reinforced concrete and steel cross-sections.

Starting from the significant contributions of these past studies, the present paper tries to address the 

topic in an analytical way, providing a set of expressions useful for a direct calculation of M-N and 

M-χ diagrams in a preliminary stage of assessment. Differently from the previous researches, the 

present work is focused on the derivation of closed-form equations both for strength domains and 

moment-curvature relationships.

In order to perform the calculation of the cross-section diagrams without the adoption of iterative 

procedures, the masonry stress-strain relationships assumed in the study are no-tension models with 

linear/bilinear behavior in compression. Particularly, the constitutive laws implemented in the 

calculations try to catch the experimental stress-strain behavior with an increasing representability: 

Elastic-Brittle (EB) model, Elastic-Plastic (EP) model, Elastic-Softening (ES) model.

2. Rectangular URM cross-section analysis

Cross-section geometry and masonry constitutive model are required for the evaluation of M-N and 

M-χ diagrams. In the case of rectangular URM members without internal leaf, the geometry of the 

section is defined by height h and width B (Fig. 1a).

Uniaxial response of the material is represented by σm-εm stress-strain diagram (Fig. 1b). Looking at 

experimental results [29,34], the following parameters can be defined: Em is the initial Young 

modulus; fm is the maximum compressive strength; fr is the residual compressive strength; εm1 is the 

peak axial strain; εmu is the ultimate axial strain. Once these parameters are extracted from laboratory 

test, the analytical constitutive model of masonry can be described with the expressions available in 



technical guidelines and scientific literature. American standard ACI 530 [35] adopts 

elastic-perfectly-plastic model for URM having maximum strength fm and constant value of εmu = 

0.0035 (clay bricks). Eurocode 6 [27], following the reinforced concrete guidelines, suggests a 

parabola-rectangle law with three input parameters (fm, εm1, εmu). Starting from the concrete stress-

strain model proposed by Kent and Park [36], more sophisticated relationships have been proposed 

accounting: linear strain softening [25]; effect of lime mortar joints [34]; probabilistic best fitting 

with respect to experimental test [29]. As reported in the introduction, in the present work three 

linear/bilinear stress-strain laws are adopted for the derivation of M-N and M-χ closed-form 

expressions (Fig. 1c): Elastic-Brittle (EB), Elastic-Plastic (EP), Elastic-Softening (ES). Masonry 

tensile strength is assumed equal to zero according to international codes [27,35]. 

Fig. 1. (a) Geometry of the cross-section; (b) representative stress-strain diagram for masonry 

material; (c) constitutive models adopted in the study.

2.1. Elastic-Brittle Constitutive Law

The EB constitutive law is reported in Fig. 2a. The behavior in compression is elastic up to the 

strength limit fm. The ultimate strain in compression εmu is equal to the axial strain at maximum εm1 

(brittle behavior).



Fig. 2. (a) EB constitutive law; (b) ultimate limit state in uncracked condition; (c) ultimate limit state 

in cracked condition; (d) M-χ diagram stages.

2.1.1. M-N Interaction Diagram

The M-N diagram is evaluated by assuming the stress σm = fm at the extreme fiber of the section (Fig. 

2b-c). From an analytical point of view, the interaction curve is defined by two branches. The first 

branch collects the ultimate points of the cross-section in cracked condition (Fig. 2c) and is defined 

for a resisting axial load NR ranging from 0 to NR,dec = fmBh/2, where NR,dec is the axial strength at the 

decompression limit of the cross-section. The second branch represents the resistance of the 

uncracked section and is defined from NR = NR,dec to NR = NR,com, where NR,com = fmBh is the 

maximum compressive strength of the cross-section. The following section reports the algebraic 

procedure adopted for the calculation of M-N diagrams. The results are summarized in Table 2.

- Cracked section: 0 ≤ NR ≤ NR,dec

The analytical function MR = f (NR) is derived solving a non-linear system in two equations (i.e. the 

axial equilibrium and rotational equilibrium) and two variables: the neutral axis depth yn and the 

axial load NR.



The axial and rotational equilibrium are reported in Eqs. (1) and (2) respectively:

             (1)nmR Byf
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By extracting the neutral axis yn from Eq. (1) and substituting in Eq. (2), the expression of the 

interaction diagram in cracked condition is defined by Eq. (3):

           (3)









Bf3
N2

2
hNM

m

R
RR

- Uncracked section: NR,dec ≤ NR ≤ NR,com

The interaction domain in uncracked condition is described by a line having as extreme points the 

decompression limit (yn = h) and the pure compression (yn = ∞) situations. The coordinates of these 

points are reported in Eqs. (4) and (5), while Eq. (6) describes the resulting domain.
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- Decompression limit curve: 0 ≤ Ndec ≤ NR,dec

In the case of URM cross-sections, it is interesting to evaluate the decompression limit curve that 

collects the M-N coordinates for yn = h. The curve is defined in the range 0 ≤ Ndec ≤ NR,dec: once the 

NR,dec is exceeded, the failure of the cross-section occurs before the partialization. In Eq. (7) the 

relative formula is reported.
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NM dec
dec 



Cracked Section Uncracked Section

Strength Domain Equations

MR = f(NR)










Bf3
N2

2
hNM

m

R
RR

2
mRR Bhf

6
1hN

6
1M 

Decompression Limit h
6

NM dec
dec  -

Interval of Validity 0 ≤ N ≤ NR,dec = fmBh/2 NR,dec ≤ N ≤ NR,com = fmBh

Table 2. EB constitutive law: strength domain.

2.1.2. M-χ Moment-Curvature Diagram

The evaluation of the moment-curvature (M-χ) diagram is performed for a given axial load (Fig. N

2d). The curve is defined by two branches: the first one is related to the behavior in uncracked 

condition while the second one is referred to the cracked state. The decompression limit of the cross-

section defines the boundary between the two parts (Table 3).

Uncracked Section Cracked Section

Moment-Curvature Equations

M = f (χ)
 3EBh

12
1EIM 















BE9
N2

2
hNM

Interval of Validity 0 ≤ χ ≤ χdec  = 2 / (EBh2)N χdec ≤ χ ≤ χu = fm
2
 B/(2E )N

Table 3. EB constitutive law: moment-curvature equations.

- Uncracked section: 0 ≤ χ ≤ χdec

The cross-section has elastic response until the decompression limit. The curvature at decompression 

limit is reported in Eq. (8):

χdec = εm/h = σm/(Eh) = 2 / (EBh2)            (8)N

the corresponding moment-curvature analytical relation is reported in Eq. (9):

            (9) 3EBh
12
1EIM



- Cracked section: χdec ≤ χ ≤ χu

The curvature at ultimate limit is given in Eq. (10): 

χu = εmu/yn = fm
2
 B/(2E )             (10)N

The analytical equation of the non-linear branch is derived by extracting the variable yn from the 

translational equilibrium equation, Eq. (11), and substituting it in the rotational one, Eq. (12):
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2.1.3. 3D M-N-χ Diagram

A clear graphical representation of the flexural capacity of URM cross-sections can be provided by 

the 3D M-N-χ diagram. This envelope curve allows the visualization of the curvature ductility 

depending on the axial load insisting over the cross-section. As mentioned before, in case of EB 

model, the URM cross-section exhibits nonlinear deformations only for N≤NR,dec (Ductile Curvature 

Region). Once the axial force at decompression NR,dec is exceeded, the section behaves in an elastic-

brittle manner (Brittle Curvature Region). The 3D diagram of a representative cross-section is 

reported in Fig. 3. The geometrical and mechanical characteristics are: B = 1 m, h = 1 m, Em = 2000 

MPa, fm = 3 MPa.

The maximum bending capacity of the section occurs in cracked condition for a level of normalized 

axial load n = N/(fmBh) = 0.37. The curvature ductility, defined as the ratio between the ultimate 

curvature and the one at decompression χu/χdec, is larger than 20 for n < 0.2.



 

Fig. 3. 3D M-N-χ diagram for EB model.

2.2. Elastic-Plastic (EP) Constitutive Law

In order to take into account the redistribution of stresses inside the cross-section, international 

building codes [27,35] suggest the inclusion of a plastic plateau in the stress-strain relationship of 

masonry. In Fig. 4a, EP model is reported.

Figure 4. (a) EP constitutive law; (b) EP: ultimate limit state; (c) ES constitutive law; (d) ES: 

ultimate limit state.



2.2.1. M-N Interaction Diagram

Two limit domains can be evaluated for the case of EP masonry material: the elastic limit domain 

(identical to the EB ultimate limit domain) is defined by imposing εm = εm1 at the extreme fiber of the 

cross section; similarly, the ultimate limit domain is derived by imposing εm = εmu.

The ultimate limit domain is described by two branches. The first one is defined for 0 ≤ NR ≤ NR,dec 

where (Eq. (13)): 

NR,dec = fmBh (1 – 0.5 εm1/εmu)                     (13)

This interval collects the ultimate limit points in cracked condition. The second branch fits in the 

range NR,dec ≤ NR ≤ NR,com = fmBh and includes the ultimate limit points in uncracked state.

Similarly, the decompression limit is defined in two ranges. The first one ranges in 0 ≤ Ndec ≤ fmBh/2 

and collects the decompression limit points with εm ≤ εm1 (equivalent to the decompression limit for 

EB model). The second one, defined for fmBh/2 ≤ Ndec ≤ NR,dec, includes the decompression limit 

point in elastoplastic condition. The analytical expressions of the M-N interaction diagrams are listed 

in Table 4.
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h
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BhfN2

2
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



 
 -

Interval of 

Validity
0 ≤ N ≤ fmBh/2

fmBh/2 ≤ N ≤ NR,dec = 

fmBh (1 – 0.5 εm1/εmu)
NR,dec ≤ N ≤ NR,com = fmBh

Table 4. EP constitutive law: strength domain.



2.2.2. M-χ Moment-Curvature Diagram

Analytical equations of M-χ diagrams are derived for the three axial load intervals of validity 

reported in Table 4.

- High Ductility Curvature Region (HDCR)

Axial load range: 0 ≤  ≤ fmBh/2N

Description of the phenomena: Phase I. Elastic behavior of the cross-section up to the decompression 

limit, which occurs before the achievement of the elastic strain εm1; Phase II. Achievement of the 

elastic strain εm1 in cracked condition; Phase III. Achievement of the ultimate strain εmu in cracked 

condition.

- Moderate Ductility Curvature Region (MDCR)

Axial load range: fmBh/2 ≤  ≤ fmBh (1 – 0.5 εm1/εmu)N

Description of the phenomena: Phase I. Elastic behavior of the cross-section up to the achievement 

of the elastic strain εm1; Phase II. Elastoplastic response of the section up to decompression limit; 

Phase III. Elastoplastic behavior of the section in cracked condition up to the achievement of the 

ultimate strain εmu.

- Low Ductility Curvature Region (LDCR)

Axial load range: fmBh (1 – 0.5 εm1/εmu) ≤  ≤ fmBhN

Description of the phenomena: Phase I. Elastic behavior of the cross section up to the achievement of 

the elastic strain εm1; Phase II. Elastoplastic response of the section up to the ultimate strain εmu.

Equations and relevant intervals of validity of the three regions are listed in Table 5.

HDCR MDCR LDCR
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Table 5. EP constitutive law: moment-curvature equations.

2.2.3. 3D M-N-χ Diagram

The 3D M-N-χ diagram is reported in Fig. 5 for the representative cross-section defined in 2.1.3. 

Here, εmu = 0.0035 is assumed as ultimate strain of masonry in compression. Given these parameters, 

the Ductility Curvature Regions are defined in the following intervals:

HDCR - 0 ≤ n ≤ 0.5; MDCR - 0.5 ≤ n ≤ 0.785; LDCR - 0.785 ≤ n ≤ 1.



Figure 5. M-N-χ interaction diagram for EP constitutive model.

2.3. Elastic-Softening (ES) Constitutive Law

Constitutive laws with complex softening branch [24] are certainly the most suitable models for 

masonry material [7] and are usually adopted when the cross-section is discretized with fibers [3]. 

However, since advanced stress-strain relationships are defined by articulate equations, the closed-

form integration of these models results in hardly manageable M-N and M-χ expressions. For this 

reason, in the present work, the effect of the masonry strain softening is taken into account with a 

bilinear Elastic-Softening (ES) constitutive model.

The corresponding stress-strain curve is reported in Fig. 4b. The initial elastic branch is followed by 

a negative slope determined by the coefficient s = (fm–fr)/(εmu–εm1) where fr is the residual strength at 

ultimate strain εmu.



2.3.1. M-N Interaction Diagram

The methodology adopted for EB and EP models is here extended to ES constitutive law. The two 

branches of the M-N interaction diagram, corresponding to cracked and uncracked conditions, join at 

the abscissa NR = NR,dec (Eq. 14). Table 6 summarize the results.
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Table 6. Elastic-Softening (ES) constitutive law: strength domain.



2.3.2. M-χ Moment-Curvature Diagram

Also in the case of ES material the M-χ diagram expressions are defined by means of three Ductility 

Curvature Regions.

- High Ductility Curvature Region (HDCR)

Axial load range: 0 ≤  ≤ fmBh/2N

Description of the phenomena: Phase I. Elastic behavior of the cross section up to decompression 

limit, which occurs before the achievement of the elastic strain εm1; Phase II. Achievement of the 

elastic strain εm1 in cracked condition; Phase III. Achievement of the maximum bending capacity; 

Phase IV: Decrease of the bending moment up to the achievement of the ultimate strain εmu in 

cracked condition.

- Moderate Ductility Curvature Region (MDCR)

Axial load range: fmBh/2 ≤  ≤ N
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Description of the phenomena: Phase I. Elastic behavior of the cross section up to the achievement of 

the elastic strain εm1; Phase II. Elastoplastic response of the section up to decompression limit; Phase 

III. Achievement of the maximum bending capacity in cracked condition; Phase IV: Decrease of the 

bending moment up to the achievement of the ultimate strain εmu.

- Low Ductility Curvature Region (LDCR)

Axial load range: ≤ ≤ fmBh
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Description of the phenomena: Phase I. Elastic behavior of the cross section up to the achievement of 

the elastic strain εm1; Phase II. Achievement of the maximum bending capacity; Phase III: Decrease 

of the bending moment up to the achievement of the ultimate strain εmu in uncracked condition.

All the relevant equations are reported in Table 7.
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Table 7. Elastic-Softening (ES) constitutive law: moment-curvature equations.

2.3.3. 3D M-N-χ Diagram

In Fig. 6, the 3D M-N-χ diagram is reported for the representative cross-section. The residual 

strength is assumed as fr = 0.8fm, according to Augenti et al. [23]. The resulting Ductility Curvature 

Regions are: HDCR - 0 ≤ n ≤ 0.5; MDCR - 0.5 ≤ n ≤ 0.729; LDCR - 0.729 ≤ n ≤ 1.



Figure 6. M-N-χ interaction diagram for ES constitutive model.

2.4. Discussion of the results

The representative M-χ diagrams for the three stress-strain constitutive models (EB, EP, ES) are 

collected in Fig. 7. Different levels of normalized axial load n are considered. 

In Fig. 7a, the M-χ behavior in HDCR is reported. For any value of n, the EB model provide 

conservative results both in terms of bending resistance (MR) and ultimate curvature (χu); for levels 

of n < 0.15 the percentage error in the evaluation of the maximum carrying capacity of the section is 

lower than 5% compared to the most accurate ES model. Similar conclusion affects the comparison 

between the EP and ES model. The adoption of a perfectly-plastic plateau is reasonable for value of 

n up to 0.25. In the extreme case of n = 0.5, the comparison in terms of ultimate curvatures is still 

acceptable but the difference in maximum bending capacity is greater than 10%.



Fig. 7b reports the results comparison in MDCR. In this region, EB model behaves linearly since it 

cannot redistribute stresses over the height of the cross-section, resulting in a conservative estimation 

of MR and χmu. Comparing EP and ES models, the difference in ultimate bending moment increase up 

to 20%.

Finally, in the LDCR (Fig. 7c), strong differences between the three constitutive models are detected. 

For a level of n = 0.8, the EB model provide a MR which is 50% lower than the maximum resisting 

moment of the ES constitutive law. For the same value of n, the percentage difference in maximum 

moment between EP and ES is greater than 28%. Strong level of axial compression (n = 0.9) 

accentuates the differences described before: the difference between EP and ES in terms of 

maximum bending moment is over 35% while the corresponding difference in terms of curvature 

reaches about 60%.



Figure 7. M-χ diagrams for different constitutive models. (a) HDCR: High Ductility Curvature 

Region; (b) MDCR: Moderate Ductility Curvature Region; (c) LDCR: Low Ductility Curvature 

Region.



3. Applications of M-N and M-χ expressions for non-linear structural analysis

As stated in the Introduction, cross-section representative diagrams are handy and understandable 

tools for practitioners involved in the structural assessment of URM buildings. Particularly, M-N 

domains can be adopted for the safety verification of masonry members at the cross-section level. On 

the other side, M-χ relations can be assigned to beam-elements for nonlinear FEM analyses of URM 

structures in bending behavior.

The present Section addresses the second of the aforementioned applications. In order to simulate the 

experimental out-of-plane response of a stone masonry wall (Ferreira et al. [37]), nonlinear pushover 

analyses have been implemented by using different types of beam finite elements: beam-elements 

with M-χ nonlinearities and beam-elements with fiber discretization over the cross-section. In details, 

moment-curvature relationships have been evaluated via closed-form expressions for EB, EP and ES 

constitutive laws. Stress-strain models for fibers have been selected from literature studies: Kent and 

Park concrete model extended by Brencich et al. for the case of masonry [25]; Mander concrete 

model adopted by Raka et al. [38] and by Günay et al. [3] for URM piers.

3.1. Experimental benchmark and input data for pushover analyses

The experimental campaign conducted by Ferreira et al. [37] includes the top-displacement 

controlled out-of-plane loading of three stone masonry walls (Fig. 8) subjected to different levels of 

vertical load: Test_1 – N1 = 0 kN, Test_2 – N2 = 52 kN, Test_3 – N3 = 140 kN.

The geometrical characteristics of the specimens are: height of the wall L = 2.50 m, depth and width 

of the rectangular cross-section respectively h = 0.65 and B = 1.30 m. The unit weight of the 

masonry assemblage is γ = 21 kN/m3. The elastic properties of the material have been evaluated 

thanks to a vibration test, resulting in a value of the Young Modulus E = 490 MPa.

The maximum horizontal displacement Δmax imposed at the top of the wall is 17 cm (Test_1) and 20 

cm (Test_2, Test_3).



In absence of a specific laboratory test on the URM assemblage of the walls, the following 

assumptions have been considered for the implementation of the pushover analyses. The strength of 

the masonry in compression (fm) is assumed equal to 0.35 times the resistance of the units [39] i.e. fm 

= 0.35 × 43.83 ≈ 15 MPa. This value agrees with tests on masonry prisms having the same typology 

of mortar and stone blocks (Vasconcelos [40]). The strain ductility of the material is assumed as 

μ = εmu/εm1 = 2, according to Kaushik et al. [34]. The residual strength is supposed equal to fr = 0.8fm 

(Augenti et al. [23]).

3.2. Pushover analyses with M-χ nonlinearities

The numerical simulations of the tests have been performed in the OpenSees framework [41] 

implementing a displacement controlled pushover analysis. The wall is discretized by using 7 

nonlinear beam finite elements. P-Delta effects are included in the calculation.

Flexural nonlinearity has been assigned in the form of M-χ relationships. M-χ curves for the three 

constitutive models (EB, EP, ES) were calculated using the equations reported in Tables 3, 5, 7. The 

normalized axial forces at the base of the wall for the three vertical load conditions are n1 = 0.0035, 

n2 = 0.0076, n3 = 0.0145. It is important to observe that these low axial loads generate overlapped 

moment-curvature diagrams for EB, EP and ES constitutive models. As discussed in 2.4. (Fig. 7a., 

n < 0.1) the difference between the three laws is appreciated only in terms of ultimate curvature χu. 

The comparisons between experimental tests and numerical outcomes are reported in Fig. 9. For the 

three levels of axial load, the finite element models provide good results in terms of peak base shear 

capacity and residual force after peak. Percentage errors between numerical results and experimental 

data are reported in Table 8. As expected, given the similarity of M-χ curves from EB-EP-ES 

models, the pushover diagrams result analogous for the three material constitutive laws. In terms of 

deformations, the maximum curvature reached at the base of the wall is lower than the ultimate value 



χu for EB-EP-ES models: in other words, the toe compression failure is never achieved. This 

numerical result is in agreement with the experimental test observations reported in [37].

Test_1 Test_2 Test_3

VB,P VB,R VB,P VB,R VB,P VB,R

M-χ Nonlinearity

(EB-EP-ES)

17.44 5.16 22.46 8.44 19.47 15.23

Fiber

(Brencich, 2009)

14.57 8.03 19.40 2.41 16.81 6.89

Fiber

(Raka, 2015)

10.00 7.67 18.75 2.63 16.27 6.47

VB,P : Peak base shear

VB,R : Residual base shear after peak

Table 8. Percentage errors between numerical outcomes and experimental results.

3.3. Pushover analyses with fiber beam-elements

In order to assess the accuracy of the pushover analyses with M-χ nonlinearities, two finite element 

models with fiber subdivision over the cross-section have been implemented. The first one assumes 

the no-tension stress-strain constitutive law initially proposed by Kent and Park for concrete material 

[36] and readopted by Brencich et al. [25] for the case of masonry. The second model consider the 

concrete compressive stress-strain relationship proposed by Mander et al. [42] with tensile strength 

characterized by exponential decay. Also this model has been previously used for the analysis of 

URM members by Raka et al. [38] and by Günay et al. [3].

Table 8 reports the percentage errors of the two numerical simulations respect to experimental data. 

It can be observed that the results discrepancies between the two models are limited. Maximum 

differences are detected in the peak base shear (VB,P) for Test_1 (10.00% Raka vs. 14.57% Brencich). 

Fiber models and M-χ models displays comparable percentage errors respect to experimental data. 



Particularly, fiber models slightly overestimate the residual base shear capacity for Test_1 and 

Test_2 while the analyses performed with M-χ nonlinearities provide conservative results for the 

three values of the investigated axial loads.

Fig. 8. Test setup of the experimental campaign conducted by Ferreira et al. [29]

 

Fig. 9. Comparison between experimental results (Ferreira et al.) and numerical analyses based on 

the M-χ nonlinearities and fibers cross-section subdivision.



4. Conclusions

In the present paper, the flexural strength-ductility assessment of URM rectangular cross-sections 

has been presented via closed-form expressions. Three simplified stress-strain constitutive models 

have been considered for the representation of the stress-strain behavior of masonry: Elastic-Brittle 

(EB), Elastic-Plastic (EP) and Elastic-Softening (ES) laws.

Analytical closed-form equations have been derived and tested on a representative URM section. It 

can be observed that the outcomes are in agreement with the results presented in previous studies 

[23–25,43]:

(i) EB constitutive law provides conservative results both in terms of flexural capacity and ultimate 

curvature. Obviously, when the normalized axial load n exceeds 0.5, the results of this model are 

inaccurate because the stress redistribution over the cross-section is not reproduced.

(ii) EP model generates three Ductility Curvature Regions (DCR): High, Moderate and Low DCR. In 

HDCR the M-χ response is almost elastic-perfectly-plastic. On the contrary, MDCR and LDCR are 

characterized by hardening-type M-χ backbone curves.

(iii) ES stress-strain relationship defines three Ductility Curvature Regions. Particularly, as 

confirmed by past studies [23], the influence of the strain softening is more relevant when increasing 

the applied axial force. For n > 0.5, the M-χ diagram is characterized by a sloping branch after peak 

that means unstable behavior of the masonry element for increasing lateral loads. On the contrary, 

when n < 0.35, the difference between ES and EP laws is limited.

The last part of the paper investigates the applicability of the closed-form expressions for the 

numerical assessment of masonry elements under transversal forces. As regard, it is specified that a 

seismic analysis based on a purely bending response is valid only for masonry columns and slender 

walls, usually not affected by shear damages.



The results of out-of-plane experimental tests on masonry walls [37] have been used as benchmark. 

Two sorts of nonlinear finite element analyses have been implemented to reproduce the laboratory 

tests. The first type adopts beam-elements with M-χ nonlinearities derived from closed-form 

expressions. The second one includes beam-elements with fiber discretization over the cross-section. 

Advanced masonry stress-strain constitutive laws have been assigned to fibers, as suggested by 

previous research investigations [25,38].

The comparison between experimental data and numerical outcomes shows that the models with M-χ 

nonlinearities provide good results in terms of peak base shear capacity and residual force after peak. 

Furthermore, the results are conservative for the investigated scenarios. As expected, due to the low 

axial load acting on the wall, EB, EP and ES models provide overlapped force-displacement curves. 

Similar results are obtained from fiber models, proving the validity of M-χ approach for the analyzed 

cases. Maximum percentage error discrepancy between fiber and M-χ models does not exceed 9%. 

In conclusion, the proposed sets of M-N-χ closed-form expressions seem suitable for the flexural 

strength and ductility evaluation of URM rectangular cross-sections. Furthermore, the numerical 

results suggest that it is possible to provide a relatively fast estimation of the out-of-plane behavior 

of a masonry wall by implementing the M-χ closed-form expressions in beam finite element models.
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