The formulation of an integral suboptimal second-order sliding mode ((ISSOSM) control algorithm, oriented to solve motion control problems for robot manipulators, is presented in this paper. The proposed algorithm is designed so that the so-called reaching phase, normally present in the evolution of a system controlled via the sliding mode approach, is reduced to a minimum. This fact makes the algorithm more suitable to be applied to a real industrial robot, since it enhances its robustness, by extending it also to time intervals during which the classical sliding mode is not enforced. Moreover, since the algorithm generates second-order sliding modes, while the model of the controlled electromechanical system has a relative degree equal to one, the control action actually fed into the plant is continuous, which provides a positive chattering alleviation effect. The assessment of the proposal has been carried out by experimentally testing it on a COMAU SMART3-S2 anthropomorphic industrial robot manipulator. The satisfactory experimental results, also compared with those obtained with a standard proportional-derivative controller and with the original suboptimal algorithm, confirm that the new algorithm can actually be used in an industrial context.

Design of an integral suboptimal second-order sliding mode controller for the robust motion control of robot manipulators

Incremona, Gian Paolo
2015-01-01

Abstract

The formulation of an integral suboptimal second-order sliding mode ((ISSOSM) control algorithm, oriented to solve motion control problems for robot manipulators, is presented in this paper. The proposed algorithm is designed so that the so-called reaching phase, normally present in the evolution of a system controlled via the sliding mode approach, is reduced to a minimum. This fact makes the algorithm more suitable to be applied to a real industrial robot, since it enhances its robustness, by extending it also to time intervals during which the classical sliding mode is not enforced. Moreover, since the algorithm generates second-order sliding modes, while the model of the controlled electromechanical system has a relative degree equal to one, the control action actually fed into the plant is continuous, which provides a positive chattering alleviation effect. The assessment of the proposal has been carried out by experimentally testing it on a COMAU SMART3-S2 anthropomorphic industrial robot manipulator. The satisfactory experimental results, also compared with those obtained with a standard proportional-derivative controller and with the original suboptimal algorithm, confirm that the new algorithm can actually be used in an industrial context.
2015
Nonlinear control systems; robot control; robust control; sliding mode control; uncertain systems
File in questo prodotto:
File Dimensione Formato  
issosm_TCST_j.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 4.47 MB
Formato Adobe PDF
4.47 MB Adobe PDF   Visualizza/Apri
11311-1027685 Incremona.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.51 MB
Formato Adobe PDF
4.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1027685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 188
  • ???jsp.display-item.citation.isi??? 151
social impact