The lifetime estimation of power converters is a crucial issue for the reliability of electrical generators with renewable sources. During normal operations, the switching devices show junction temperature cycles that are widely recognized as the main cause of their failures. Although in-line junction temperature monitoring is extremely difficult, its knowledge is essential in order to achieve a reliable power converter lifetime estimation. This work proposes an innovative real-time in-line monitoring strategy based on an accurate dynamic compact thermal model of the whole power module, capable of estimating the junction temperature from the measurement of the switching device dissipated powers. This model is suitable for FPGA implementation thus can be easily integrated in the control architecture of modern power converters. Experimental results on an IGBT power module demonstrate the reliability of the proposed method for lifetime estimation.

Real-time temperature cycling estimation of IGBT power modules with power in-line measurements and compact thermal modeling

CODECASA, LORENZO;
2016-01-01

Abstract

The lifetime estimation of power converters is a crucial issue for the reliability of electrical generators with renewable sources. During normal operations, the switching devices show junction temperature cycles that are widely recognized as the main cause of their failures. Although in-line junction temperature monitoring is extremely difficult, its knowledge is essential in order to achieve a reliable power converter lifetime estimation. This work proposes an innovative real-time in-line monitoring strategy based on an accurate dynamic compact thermal model of the whole power module, capable of estimating the junction temperature from the measurement of the switching device dissipated powers. This model is suitable for FPGA implementation thus can be easily integrated in the control architecture of modern power converters. Experimental results on an IGBT power module demonstrate the reliability of the proposed method for lifetime estimation.
2016
IET Conference Publications
978-1-78561-300-5
Dynamic Compact Thermal Modeling (DCTM); Power converter failures; Power module; Real-time temperature estimation; Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1027664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact