This paper presents the novel swing adsorption reactor cluster (SARC) for post combustion CO2 capture. The SARC concept consists of a cluster of bubbling/turbulent multistage fluidized bed reactors which dynamically cycle a solid sorbent between carbonation and regeneration. A synergistic combination of vacuum swing through a vacuum pump and temperature swing through a heat pump is employed to ensure high process efficiency. The base case SARC configuration imposed an energy penalty of 9.64%-points on a conventional coal-fired power plant, which is in line with advanced amine-based absorption processes. Sensitivity analyses showed that significant potential for further improvements (∼1.5%-points) exist through mechanisms such as an increase in the number of reactor stages, further reductions in regeneration pressure and optimization of the cycle length. Additional efficiency improvements can also be traded for increased reactor footprint. However, future sorbent material selection studies especially for this novel process hold the largest potential for further efficiency improvements. The SARC concept is well suited to retrofitting purposes due to limited integration with the steam cycle, and the simple standalone reactor design will simplify future scale-up efforts. The concept is therefore recommended for further study.
Thermodynamic assessment of the swing adsorption reactor cluster (SARC) concept for post-combustion CO2 capture
ROMANO, MATTEO CARMELO;GIUFFRIDA, ANTONIO;CHIESA, PAOLO;
2017-01-01
Abstract
This paper presents the novel swing adsorption reactor cluster (SARC) for post combustion CO2 capture. The SARC concept consists of a cluster of bubbling/turbulent multistage fluidized bed reactors which dynamically cycle a solid sorbent between carbonation and regeneration. A synergistic combination of vacuum swing through a vacuum pump and temperature swing through a heat pump is employed to ensure high process efficiency. The base case SARC configuration imposed an energy penalty of 9.64%-points on a conventional coal-fired power plant, which is in line with advanced amine-based absorption processes. Sensitivity analyses showed that significant potential for further improvements (∼1.5%-points) exist through mechanisms such as an increase in the number of reactor stages, further reductions in regeneration pressure and optimization of the cycle length. Additional efficiency improvements can also be traded for increased reactor footprint. However, future sorbent material selection studies especially for this novel process hold the largest potential for further efficiency improvements. The SARC concept is well suited to retrofitting purposes due to limited integration with the steam cycle, and the simple standalone reactor design will simplify future scale-up efforts. The concept is therefore recommended for further study.File | Dimensione | Formato | |
---|---|---|---|
SARC.pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.93 MB
Formato
Adobe PDF
|
3.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.