The manufacturing and the preliminary numerical and experimental testing results of a fiber optic based sensor, able to recognize different load paths, are herein presented. This device is conceived to identify load directions by strain detection along a circumferential geometry. A demonstrator is realized by manufacturing a circular shaped, flexible glass/epoxy laminate hosting the sensible elements. Three loops of optical fiber, laying at different quotes along its thickness, are there integrated. The sensor system is supposed to be bonded on the structural element and then able to follow its deformations under load. The working principle is based on the comparison of the strain paths detected at each fiber optic loop at homologous positions. Rayleigh backscattering optical technology is implemented to measure high spatial resolution strains. A finite element model is used to simulate the sensor behavior and assess its optimal configuration. A preliminary experimental campaign and a numerical correlation are performed to evaluate sensor performance considering in-plane and bending loads.

A load identification sensor based on distributed fiber optic technology

BETTINI, PAOLO;SALA, GIUSEPPE
2017-01-01

Abstract

The manufacturing and the preliminary numerical and experimental testing results of a fiber optic based sensor, able to recognize different load paths, are herein presented. This device is conceived to identify load directions by strain detection along a circumferential geometry. A demonstrator is realized by manufacturing a circular shaped, flexible glass/epoxy laminate hosting the sensible elements. Three loops of optical fiber, laying at different quotes along its thickness, are there integrated. The sensor system is supposed to be bonded on the structural element and then able to follow its deformations under load. The working principle is based on the comparison of the strain paths detected at each fiber optic loop at homologous positions. Rayleigh backscattering optical technology is implemented to measure high spatial resolution strains. A finite element model is used to simulate the sensor behavior and assess its optimal configuration. A preliminary experimental campaign and a numerical correlation are performed to evaluate sensor performance considering in-plane and bending loads.
2017
Health Monitoring of Structural and Biological Systems XI
Load identification, fiber optic, distributed sensing, Rayleigh backscattering, strain transducer, smart system
File in questo prodotto:
File Dimensione Formato  
CIMIM_OA_03-17.pdf

accesso aperto

Descrizione: Paper open access
: Publisher’s version
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri
CIMIM03-17.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1015448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact