Advances in growth technology of oxide materials allow single atomic layer control of heterostructures. In particular delta doping, a key materials' engineering tool in today's semiconductor technology, is now also available for oxides. Here we show that a fully electric-field-tunable spin-polarized and superconducting quasi-2D electron system (q2DES) can be artificially created by inserting a few unit cells of delta doping EuTiO3 at the interface between LaAlO3 and SrTiO3 oxides. Spin polarization emerges below the ferromagnetic transition temperature of the EuTiO3 layer (TFM = 6-8 K) and is due to the exchange interaction between the magnetic moments of Eu-4f and of Ti-3d electrons. Moreover, in a large region of the phase diagram, superconductivity sets in from a ferromagnetic normal state. The occurrence of magnetic interactions, superconductivity and spin-orbit coupling in the same q2DES makes the LaAlO3/EuTiO3/SrTiO3 system an intriguing platform for the emergence of novel quantum phases in low-dimensional materials.

Tunable spin polarization and superconductivity in engineered oxide interfaces

GHIRINGHELLI, GIACOMO CLAUDIO;
2016-01-01

Abstract

Advances in growth technology of oxide materials allow single atomic layer control of heterostructures. In particular delta doping, a key materials' engineering tool in today's semiconductor technology, is now also available for oxides. Here we show that a fully electric-field-tunable spin-polarized and superconducting quasi-2D electron system (q2DES) can be artificially created by inserting a few unit cells of delta doping EuTiO3 at the interface between LaAlO3 and SrTiO3 oxides. Spin polarization emerges below the ferromagnetic transition temperature of the EuTiO3 layer (TFM = 6-8 K) and is due to the exchange interaction between the magnetic moments of Eu-4f and of Ti-3d electrons. Moreover, in a large region of the phase diagram, superconductivity sets in from a ferromagnetic normal state. The occurrence of magnetic interactions, superconductivity and spin-orbit coupling in the same q2DES makes the LaAlO3/EuTiO3/SrTiO3 system an intriguing platform for the emergence of novel quantum phases in low-dimensional materials.
2016
Anisotropy; Magnetic Fields; Materials Testing; Metals; Oxides; Chemistry (all); Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
11311-1014862_Ghiringhelli.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 7.16 MB
Formato Adobe PDF
7.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1014864
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 101
social impact