Substituting noble metals for high-index dielectrics has recently been proposed as an alternative strategy in nanophotonics to design broadband optical resonators and circumvent the Ohmic losses of plasmonic materials. In this paper, we demonstrate that subwavelength silicon nanoantennas can manipulate the photon emission dynamics of fluorescent molecules. In practice, we show that dielectric nanoantennas can both increase and decrease the local density of optical states at room temperature, a process that is inaccessible with noble metals at the nanoscale. Using scanning probe microscopy, we analyze quantitatively, in three dimensions, the near-field interaction between a 100-nm fluorescent nanosphere and silicon nanoantennas with diameters ranging between 170 and 250 nm. Associated with numerical simulations, these measurements indicate increased or decreased total spontaneous decay rates by up to 15% and a gain in the collection efficiency of emitted photons by up to 85%. Our study demonstrates the potential of silicon-based nanoantennas for the low-loss manipulation of solid-state emitters at the nanoscale and at room temperature.
Enhancement and Inhibition of Spontaneous Photon Emission by Resonant Silicon Nanoantennas
GULINATTI, ANGELO;RECH, IVAN;
2016-01-01
Abstract
Substituting noble metals for high-index dielectrics has recently been proposed as an alternative strategy in nanophotonics to design broadband optical resonators and circumvent the Ohmic losses of plasmonic materials. In this paper, we demonstrate that subwavelength silicon nanoantennas can manipulate the photon emission dynamics of fluorescent molecules. In practice, we show that dielectric nanoantennas can both increase and decrease the local density of optical states at room temperature, a process that is inaccessible with noble metals at the nanoscale. Using scanning probe microscopy, we analyze quantitatively, in three dimensions, the near-field interaction between a 100-nm fluorescent nanosphere and silicon nanoantennas with diameters ranging between 170 and 250 nm. Associated with numerical simulations, these measurements indicate increased or decreased total spontaneous decay rates by up to 15% and a gain in the collection efficiency of emitted photons by up to 85%. Our study demonstrates the potential of silicon-based nanoantennas for the low-loss manipulation of solid-state emitters at the nanoscale and at room temperature.File | Dimensione | Formato | |
---|---|---|---|
Phys. Rev. Applied 2016 Bouchet.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
11311-1009637_Gulinatti.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.