This paper aims at clarifying the role of dynamic soil-structure interaction in the seismic assessment of structure and foundation, when the non-linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non-linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro-element modeling of the soil-foundation system. The results of the dynamic simulations point out the beneficial effects of the non-linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed-base or linear-elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non-linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure.

Integrated foundation-structure seismic assessment through non-linear dynamic analyses

PAOLUCCI, ROBERTO
2016-01-01

Abstract

This paper aims at clarifying the role of dynamic soil-structure interaction in the seismic assessment of structure and foundation, when the non-linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non-linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro-element modeling of the soil-foundation system. The results of the dynamic simulations point out the beneficial effects of the non-linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed-base or linear-elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non-linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure.
2016
Bridge piers; Macro-element modeling; Non-linear dynamic soil-structure interaction; Seismic assessment; Shallow foundations; Earth and Planetary Sciences (miscellaneous); Geotechnical Engineering and Engineering Geology
File in questo prodotto:
File Dimensione Formato  
Figini_Paolucci_EESD_Submitted.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1009587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact