In network virtualization, when a disaster hits a physical network infrastructure, it is likely to break multiple virtual network connections. So, after a disaster occurs, the network operator has to schedule multiple teams of repairmen to fix the failed components, by considering that these elements may be geographically dispersed. An effective schedule is very important as different schedules may result in very different amounts of time needed to restore a failure. In this study, we introduce the multiple traveling repairmen problem (MTRP) for post-disaster resilience, i.e., to reduce the impact of a disaster. Re-provisioning of failed virtual links is also considered. We first formally state the problem, where our objective is to find an optimal schedule for multiple teams of repairmen to restore the failed components in physical network, maximizing the traffic in restored virtual network and with minimum damage cost. Then, we propose a greedy (GR) and a simulated annealing (SA) algorithm, and we measure the damage caused by a disaster in terms of disconnected virtual networks (DVN), failed virtual links (FVL), and failed physical links (FPL). Numerical result shows that both proposed algorithms can make good schedules for multiple repairmen teams, and SA leads to significantly lower damage in terms of DVN, FVL, and FPL than GR.

Multiple traveling repairmen problem with virtual networks for post-disaster resilience

TORNATORE, MASSIMO;
2016-01-01

Abstract

In network virtualization, when a disaster hits a physical network infrastructure, it is likely to break multiple virtual network connections. So, after a disaster occurs, the network operator has to schedule multiple teams of repairmen to fix the failed components, by considering that these elements may be geographically dispersed. An effective schedule is very important as different schedules may result in very different amounts of time needed to restore a failure. In this study, we introduce the multiple traveling repairmen problem (MTRP) for post-disaster resilience, i.e., to reduce the impact of a disaster. Re-provisioning of failed virtual links is also considered. We first formally state the problem, where our objective is to find an optimal schedule for multiple teams of repairmen to restore the failed components in physical network, maximizing the traffic in restored virtual network and with minimum damage cost. Then, we propose a greedy (GR) and a simulated annealing (SA) algorithm, and we measure the damage caused by a disaster in terms of disconnected virtual networks (DVN), failed virtual links (FVL), and failed physical links (FPL). Numerical result shows that both proposed algorithms can make good schedules for multiple repairmen teams, and SA leads to significantly lower damage in terms of DVN, FVL, and FPL than GR.
2016
2016 IEEE International Conference on Communications, ICC 2016
9781479966646
9781479966646
disaster survivability; multiple traveling repairmen problem; physical networks; virtual networks; Computer Networks and Communications
File in questo prodotto:
File Dimensione Formato  
Ma_ICC_16.pdf

Accesso riservato

Descrizione: Ma_ICC_16
: Pre-Print (o Pre-Refereeing)
Dimensione 524.3 kB
Formato Adobe PDF
524.3 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1005421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact