In recent years, large scale natural disasters (such as earthquakes, or tsunami) have caused multiple Internet outages in different parts of the world, resulting in high infrastructures damages and capacity losses. Content providers are currently investigating novel disaster-resiliency mechanisms to maintain the service continuity in their Content Delivery Networks (CDNs). In case of such widespread failures, the content providers might not be able to guarantee Network Connectivity (i.e., the reachability of all nodes from any node in the network) and researchers have started investigating the concept of Content Connectivity (i.e., the reachability of the content from any point of the network), that can be achieved even when the network is disconnected, as long as a replica of the content can be retrieved in all the disconnected components of the network. In this paper we focus on double-link failures and consider different combinations of content connectivity and network connectivity. As guaranteeing network connectivity against double-link failures may result in very high network-resource consumption, in this work we present an Integer Linear Programming (ILP) formulation for survivable virtual network mapping to guarantee the network connectivity after single-link failures and maintain the content connectivity after double-link failures. We show that maintaining content connectivity against double-link failures costs almost the same, in terms of network resources, as providing network connectivity against single-link failures. We also investigate the trade-off between datacenter placement and the amount of resources needed to provide content connectivity in case of double-link failures.

Survivable virtual network mapping to provide content connectivity against double-link failures

HMAITY, ALI;MUSUMECI, FRANCESCO;TORNATORE, MASSIMO
2016-01-01

Abstract

In recent years, large scale natural disasters (such as earthquakes, or tsunami) have caused multiple Internet outages in different parts of the world, resulting in high infrastructures damages and capacity losses. Content providers are currently investigating novel disaster-resiliency mechanisms to maintain the service continuity in their Content Delivery Networks (CDNs). In case of such widespread failures, the content providers might not be able to guarantee Network Connectivity (i.e., the reachability of all nodes from any node in the network) and researchers have started investigating the concept of Content Connectivity (i.e., the reachability of the content from any point of the network), that can be achieved even when the network is disconnected, as long as a replica of the content can be retrieved in all the disconnected components of the network. In this paper we focus on double-link failures and consider different combinations of content connectivity and network connectivity. As guaranteeing network connectivity against double-link failures may result in very high network-resource consumption, in this work we present an Integer Linear Programming (ILP) formulation for survivable virtual network mapping to guarantee the network connectivity after single-link failures and maintain the content connectivity after double-link failures. We show that maintaining content connectivity against double-link failures costs almost the same, in terms of network resources, as providing network connectivity against single-link failures. We also investigate the trade-off between datacenter placement and the amount of resources needed to provide content connectivity in case of double-link failures.
2016
Proceedings of the 2016 12th International Conference on the Design of Reliable Communication Networks, DRCN 2016
9781467384964
9781467384964
Safety, Risk, Reliability and Quality; Computer Networks and Communications; Control and Systems Engineering
File in questo prodotto:
File Dimensione Formato  
Hmaity_DRCN_16.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1005418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 9
social impact