In recent years, the increasing traffic demand in radio access networks (RANs) has led to considerable growth in the number of base stations (BSs), posing a serious scalability issue, including the energy consumption of BSs. Optical-access-enabled Cloud-RAN (CRAN) has been recently proposed as a next-generation access network. In CRAN, the digital unit (DU) of a conventional cell site is separated from the radio unit (RU) and moved to the 'cloud' (DU cloud) for centralized signal processing and management. Each DU/RU pair exchanges bandwidth-intensive digitized baseband signals through an optical access network (fronthaul). Time-wavelength division multiplexing (TWDM) passive optical network (PON) is a promising fronthaul solution due to its low energy consumption and high capacity. In this paper, we propose and leverage the concept of a virtual base station (VBS), which is dynamically formed for each cell by assigning virtualized network resources, i.e., a virtualized fronthaul link connecting the DU and RU, and virtualized functional entities performing baseband processing in DU cloud. We formulate and solve the VBS formation (VF) optimization problem using an integer linear program (ILP). We propose novel energy-saving schemes exploiting VF for both the network planning stage and traffic engineering stage. Extensive simulations show that CRAN with our proposed VF schemes achieves significant energy savings compared to traditional RAN and CRAN without VF.

Energy-Efficient Virtual Base Station Formation in Optical-Access-Enabled Cloud-RAN

TORNATORE, MASSIMO;
2016-01-01

Abstract

In recent years, the increasing traffic demand in radio access networks (RANs) has led to considerable growth in the number of base stations (BSs), posing a serious scalability issue, including the energy consumption of BSs. Optical-access-enabled Cloud-RAN (CRAN) has been recently proposed as a next-generation access network. In CRAN, the digital unit (DU) of a conventional cell site is separated from the radio unit (RU) and moved to the 'cloud' (DU cloud) for centralized signal processing and management. Each DU/RU pair exchanges bandwidth-intensive digitized baseband signals through an optical access network (fronthaul). Time-wavelength division multiplexing (TWDM) passive optical network (PON) is a promising fronthaul solution due to its low energy consumption and high capacity. In this paper, we propose and leverage the concept of a virtual base station (VBS), which is dynamically formed for each cell by assigning virtualized network resources, i.e., a virtualized fronthaul link connecting the DU and RU, and virtualized functional entities performing baseband processing in DU cloud. We formulate and solve the VBS formation (VF) optimization problem using an integer linear program (ILP). We propose novel energy-saving schemes exploiting VF for both the network planning stage and traffic engineering stage. Extensive simulations show that CRAN with our proposed VF schemes achieves significant energy savings compared to traditional RAN and CRAN without VF.
2016
CRAN; DU cloud; energy efficiency; fronthaul; Optical access; TWDM-PON; Computer Networks and Communications; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
WangX_JSAC_16.pdf

Accesso riservato

Descrizione: WangX_JSAC_16
: Publisher’s version
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF   Visualizza/Apri
11311-1005010 Tornatore.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1005010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 72
social impact