Rayleigh-Brillouin scattering spectra (RBS) in dilute gas mixtures have been simulated by the Direct Simulation Monte Carlo method (DSMC). Different noble gas binary mixtures have been considered and the spectra have been simulated adopting the hard sphere collision model. It is suggested that DSMC simulations can be used in the interpretation of light scattering experiments in place of approximate kinetic models. Actually, the former have a firmer physical ground and can be readily extended to treat gas mixtures of arbitrary complexity. The results obtained confirm the capability of DSMC to predict experimental spectra and clears the way towards the simulation of polyatomic gas mixtures of interest for actual application (notably, air) where tractable kinetic model equations are still lacking.

DSMC simulation of Rayleigh-Brillouin scattering in binary mixtures

FREZZOTTI, ALDO;GHIROLDI, GIAN PIETRO
2016-01-01

Abstract

Rayleigh-Brillouin scattering spectra (RBS) in dilute gas mixtures have been simulated by the Direct Simulation Monte Carlo method (DSMC). Different noble gas binary mixtures have been considered and the spectra have been simulated adopting the hard sphere collision model. It is suggested that DSMC simulations can be used in the interpretation of light scattering experiments in place of approximate kinetic models. Actually, the former have a firmer physical ground and can be readily extended to treat gas mixtures of arbitrary complexity. The results obtained confirm the capability of DSMC to predict experimental spectra and clears the way towards the simulation of polyatomic gas mixtures of interest for actual application (notably, air) where tractable kinetic model equations are still lacking.
2016
AIP Conference Proceedings 1786: 30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS
978-0-7354-1448-8
File in questo prodotto:
File Dimensione Formato  
1.4967561.pdf

accesso aperto

: Publisher’s version
Dimensione 356.12 kB
Formato Adobe PDF
356.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1001929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact