An eco-genetic model tuned on a population of marble trout Salmo marmoratus subject to periodic flood events was used to explore how the evolution of growth rates interacting with density-dependent processes can modify size at age and population structure and in turn influence the resilience of populations. Fish with greater growth potential were assumed to have higher mortality rates. The results of simulations were compared between two scenarios, one in which populations may evolve growth rates and the other one in which the distribution of growth rates within a population is kept fixed. Evolving populations had a greater proportion of age 1 year individuals in the population, greater median length at age 3 years (the typical age at sexual maturity for S. marmoratus) and lower population sizes. The slightly smaller population sizes did not affect realized extinction risk. Resilience, defined as the number of years necessary to rebound from flood-induced population collapse, was on average from 2 to 3 years in both scenarios, with no significant difference between them. Moderate heritability of growth, relaxation of density-dependent processes at low densities and rapid recovery to a safe population size combine to limit the capacity to evolve faster recovery after flood-induced population collapses via changing growth rates. © 2014 The Fisheries Society of the British Isles.

Eco-evolutionary dynamics induced by massive mortality events

VINCENZI, SIMONE;
2014-01-01

Abstract

An eco-genetic model tuned on a population of marble trout Salmo marmoratus subject to periodic flood events was used to explore how the evolution of growth rates interacting with density-dependent processes can modify size at age and population structure and in turn influence the resilience of populations. Fish with greater growth potential were assumed to have higher mortality rates. The results of simulations were compared between two scenarios, one in which populations may evolve growth rates and the other one in which the distribution of growth rates within a population is kept fixed. Evolving populations had a greater proportion of age 1 year individuals in the population, greater median length at age 3 years (the typical age at sexual maturity for S. marmoratus) and lower population sizes. The slightly smaller population sizes did not affect realized extinction risk. Resilience, defined as the number of years necessary to rebound from flood-induced population collapse, was on average from 2 to 3 years in both scenarios, with no significant difference between them. Moderate heritability of growth, relaxation of density-dependent processes at low densities and rapid recovery to a safe population size combine to limit the capacity to evolve faster recovery after flood-induced population collapses via changing growth rates. © 2014 The Fisheries Society of the British Isles.
2014
Floods; Life histories; Marble trout; Somatic growth; Trade-off; Animals; Body Size; Computer Simulation; Floods; Population Density; Population Dynamics; Slovenia; Trout; Biological Evolution; Models, Biological; Aquatic Science; Ecology, Evolution, Behavior and Systematics
AUT
File in questo prodotto:
File Dimensione Formato  
Vincenzi et al. 2014 JFB.pdf

Accesso riservato

Descrizione: Full text
: Publisher’s version
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1000328
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact