This paper addresses monoharmonic vibration attenuation using piezoelectric transducers shunted with electric impedances consisting of a resistance and an inductance in series. This type of vibration attenuation has several advantages but suffers from problems related to possible mistuning. In fact, when either the mechanical system to be controlled or the shunt electric impedance undergoes a change in their dynamical features, the attenuation performance decreases significantly. This paper describes the influence of biases in the electric impedance parameters on the attenuation provided by the shunt and proposes an approximated model for a rapid prediction of the vibration damping performance in mistuned situations. The analytical and numerical results achieved within the paper are validated using experimental tests on two different test structures.

The Behaviour of Mistuned Piezoelectric Shunt Systems and Its Estimation

MANZONI, STEFANO;
2016-01-01

Abstract

This paper addresses monoharmonic vibration attenuation using piezoelectric transducers shunted with electric impedances consisting of a resistance and an inductance in series. This type of vibration attenuation has several advantages but suffers from problems related to possible mistuning. In fact, when either the mechanical system to be controlled or the shunt electric impedance undergoes a change in their dynamical features, the attenuation performance decreases significantly. This paper describes the influence of biases in the electric impedance parameters on the attenuation provided by the shunt and proposes an approximated model for a rapid prediction of the vibration damping performance in mistuned situations. The analytical and numerical results achieved within the paper are validated using experimental tests on two different test structures.
2016
Civil and Structural Engineering; Condensed Matter Physics; Geotechnical Engineering and Engineering Geology; Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
pubblicato.pdf

accesso aperto

: Publisher’s version
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/999929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact