We report on the development of foam-based double-layer targets (DLTs) for laser-driven ion acceleration. Foam layers with a density of a few mg cm-3 and controlled thickness in the 8-36 μm range were grown on μm-thick Al foils by pulsed laser deposition (PLD). The DLTs were experimentally investigated by varying the pulse intensity, laser polarisation and target properties. Comparing DLTs with simple Al foils, we observed a systematic enhancement of the maximum and average energies and number of accelerated ions. Maximum energies up to 30 MeV for protons and 130 MeV for C6+ ions were detected. Dedicated three-dimensional particle-in-cell (3D-PIC) simulations were performed considering both uniform and cluster-assembled foams to interpret the effect of the foam nanostructure on the acceleration process.

Development of foam-based layered targets for laser-driven ion beam production

PRENCIPE, IRENE;DELLASEGA, DAVID;FEDELI, LUCA;CIALFI, LORENZO;PASSONI, MATTEO
2016-01-01

Abstract

We report on the development of foam-based double-layer targets (DLTs) for laser-driven ion acceleration. Foam layers with a density of a few mg cm-3 and controlled thickness in the 8-36 μm range were grown on μm-thick Al foils by pulsed laser deposition (PLD). The DLTs were experimentally investigated by varying the pulse intensity, laser polarisation and target properties. Comparing DLTs with simple Al foils, we observed a systematic enhancement of the maximum and average energies and number of accelerated ions. Maximum energies up to 30 MeV for protons and 130 MeV for C6+ ions were detected. Dedicated three-dimensional particle-in-cell (3D-PIC) simulations were performed considering both uniform and cluster-assembled foams to interpret the effect of the foam nanostructure on the acceleration process.
2016
carbon foam; ion acceleration; laser-plasma interaction; particle-in-cell; pulsed laser deposition; Condensed Matter Physics; Nuclear Energy and Engineering
File in questo prodotto:
File Dimensione Formato  
Prencipe_PPCF16_ions-Cfoams.pdf

accesso aperto

: Publisher’s version
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/999850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 57
social impact