The paper presents a simple numerical model able to provide directly kinetic constants and reliable numerical rheometer curves for S-TBBS-DPG natural rubber. The approach is suitable to calculate the kinetic constants and maximum torque (MH) at any S-TBBS-DPG concentration, following a 3D mathematical interpolation/extrapolation procedure, when kinetic constants on few grid points of S-TBBS-DPG concentrations are available. In particular, the possibility to estimate with sufficient accuracy the behavior of natural rubber at any intermediate concentration of S-TBBS-DPG having engineering relevance has been proved, calibrating the model by means of simple closed form standard best fitting on few experimental data. The model used is a three kinetic parameters one, derived from the well known Han's and co-workers approach, where constants have been evaluated normalizing experimental rheometers curves following the commonly accepted Sun and Isayev method. The procedure has been validated against experimentally obtained rheometer curves by means of inverse analysis, exhibiting excellent prediction capabilities. The approach may be used for practical purposes in order to avoid expensive and cumbersome experimental investigations.

Curing degree prediction for S-TBBS-DPG natural rubber by means of a simple numerical model accounting for reversion and linear interaction

MILANI, GABRIELE;
2016-01-01

Abstract

The paper presents a simple numerical model able to provide directly kinetic constants and reliable numerical rheometer curves for S-TBBS-DPG natural rubber. The approach is suitable to calculate the kinetic constants and maximum torque (MH) at any S-TBBS-DPG concentration, following a 3D mathematical interpolation/extrapolation procedure, when kinetic constants on few grid points of S-TBBS-DPG concentrations are available. In particular, the possibility to estimate with sufficient accuracy the behavior of natural rubber at any intermediate concentration of S-TBBS-DPG having engineering relevance has been proved, calibrating the model by means of simple closed form standard best fitting on few experimental data. The model used is a three kinetic parameters one, derived from the well known Han's and co-workers approach, where constants have been evaluated normalizing experimental rheometers curves following the commonly accepted Sun and Isayev method. The procedure has been validated against experimentally obtained rheometer curves by means of inverse analysis, exhibiting excellent prediction capabilities. The approach may be used for practical purposes in order to avoid expensive and cumbersome experimental investigations.
2016
Experimental rheometer curves; Interpolation and extrapolation data; Natural rubber NR; Numerical kinetic model; Vulcanization with accelerated sulphur; Organic Chemistry; Polymers and Plastics
File in questo prodotto:
File Dimensione Formato  
2016_POTE.pdf

Accesso riservato

Descrizione: 2016_POTE
: Publisher’s version
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/999485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact