We develop a new reduced basis (RB) method for the rapid and reliable approximation of parametrized elliptic eigenvalue problems. The method hinges upon dual weighted residual type a posteriori error indicators which estimate, for any value of the parameters, the error between the high-fidelity finite element approximation of the first eigenpair and the corresponding reduced basis approximation. The proposed error estimators are exploited not only to certify the RB approximation with respect to the high-fidelity one, but also to set up a greedy algorithm for the offline construction of a reduced basis space. Several numerical experiments show the overall validity of the proposed RB approach.
Reduced basis approximation and a posteriori error estimates for parametrized elliptic eigenvalue problems
FUMAGALLI, IVAN;MANZONI, ANDREA;PAROLINI, NICOLA;VERANI, MARCO
2016-01-01
Abstract
We develop a new reduced basis (RB) method for the rapid and reliable approximation of parametrized elliptic eigenvalue problems. The method hinges upon dual weighted residual type a posteriori error indicators which estimate, for any value of the parameters, the error between the high-fidelity finite element approximation of the first eigenpair and the corresponding reduced basis approximation. The proposed error estimators are exploited not only to certify the RB approximation with respect to the high-fidelity one, but also to set up a greedy algorithm for the offline construction of a reduced basis space. Several numerical experiments show the overall validity of the proposed RB approach.File | Dimensione | Formato | |
---|---|---|---|
eigRB_M2ANreprint.pdf
Accesso riservato
Descrizione: Articolo
:
Publisher’s version
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.