Our study presents a geometrically scalable active micro-mixer suitable for biomedical/bioengineering applications and potentially assimilable in a Lab-on-Chip. We designed our micro-mixer with the goal of satisfying the following constraints: small dimensions, because the device must be able to process volumes of fluid in the range of 10e-6 - 10e-9 liters; high mixing speed, because mixing should be obtained in the shortest possible time; constructive simplicity, to facilitate realizability, assimilability and reusability of the micro-mixer; and geometrical scalability, because the micro-mixer should be assimilable to microfluidic systems of different dimensions. We studied numerically the mixing performance of our micro-mixer both in two- and three-dimensions. We characterize the mixing performance in terms of Reynolds, Strouhal and P´eclet numbers in order to establish a practical range of operating conditions for our micro-mixer. Finally, we show that our micro-mixer is geometrically scalable, ie., micro-mixers of different geometrical dimensions having the same nondimensional specifications produce nearly the same mixing performance.

A scalable micro-mixer for biomedical applications

CORTELEZZI, LUCA;DUBINI, GABRIELE ANGELO
2016-01-01

Abstract

Our study presents a geometrically scalable active micro-mixer suitable for biomedical/bioengineering applications and potentially assimilable in a Lab-on-Chip. We designed our micro-mixer with the goal of satisfying the following constraints: small dimensions, because the device must be able to process volumes of fluid in the range of 10e-6 - 10e-9 liters; high mixing speed, because mixing should be obtained in the shortest possible time; constructive simplicity, to facilitate realizability, assimilability and reusability of the micro-mixer; and geometrical scalability, because the micro-mixer should be assimilable to microfluidic systems of different dimensions. We studied numerically the mixing performance of our micro-mixer both in two- and three-dimensions. We characterize the mixing performance in terms of Reynolds, Strouhal and P´eclet numbers in order to establish a practical range of operating conditions for our micro-mixer. Finally, we show that our micro-mixer is geometrically scalable, ie., micro-mixers of different geometrical dimensions having the same nondimensional specifications produce nearly the same mixing performance.
File in questo prodotto:
File Dimensione Formato  
CORTL01-16.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 16.43 kB
Formato Adobe PDF
16.43 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/998283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact