We consider the problem of finding pairs (λ, u), with λ > 0 and u a harmonic function in a three-dimensional torus-like domain D, satisfying the nonlinear boundary condition ∂νu = λ sinh u on ∂D. This type of boundary condition arises in corrosion modeling (Butler-Volmer condition). We prove the existence of solutions which concentrate along some geodesics of the boundary ∂D as the parameter λ goes to zero.

Concentration along geodesics for a nonlinear Steklov problem arising in corrosion modeling

PIEROTTI, DARIO GIANCARLO;
2016-01-01

Abstract

We consider the problem of finding pairs (λ, u), with λ > 0 and u a harmonic function in a three-dimensional torus-like domain D, satisfying the nonlinear boundary condition ∂νu = λ sinh u on ∂D. This type of boundary condition arises in corrosion modeling (Butler-Volmer condition). We prove the existence of solutions which concentrate along some geodesics of the boundary ∂D as the parameter λ goes to zero.
2016
Concentration along geodesics; Corrosion modeling; Steklov problem; Analysis; Applied Mathematics; Computational Mathematics
File in questo prodotto:
File Dimensione Formato  
pppvsiam.pdf

accesso aperto

: Publisher’s version
Dimensione 271.98 kB
Formato Adobe PDF
271.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/998258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact